The Journal of immunology : official journal of the American Association of Immunologists
-
Effective immunotherapy for type 1 diabetes (T1D) relies on active induction of peripheral tolerance. Myeloid-derived suppressor cells (MDSCs) play a critical role in suppressing immune responses in various pathologic settings via multiple mechanisms, including expansion of regulatory T cells (Tregs). In this study, we investigated whether MDSCs could act as APCs to induce expansion of Ag-specific Tregs, suppress T cell proliferation, and prevent autoimmune T1D development. ⋯ The pancreata of treated mice showed significantly lower levels of lymphocyte infiltration in islet and less insulitis compared with that of the control groups. The protective effects of MDSCs might be mediated by inducing anergy in autoreactive T cells and the development of CD4(+)CD25(+)Foxp3(+) Tregs. Thist study demonstrates a remarkable capacity of transferred MDSCs to downregulate Ag-specific autoimmune responses and prevent diabetes onset, suggesting that MDSCs possess great potential as a novel cell-based tolerogenic therapy in the control of T1D and other autoimmune diseases.
-
The brain microenvironment is continuously monitored by microglia with the detection of apoptotic cells or pathogens being rapidly followed by their phagocytosis to prevent inflammatory responses. The protein annexin A1 (ANXA1) is key to the phagocytosis of apoptotic leukocytes during peripheral inflammatory resolution, but the pathophysiological significance of its expression in the CNS that is restricted almost exclusively to microglia is unclear. In this study, we test the hypothesis that ANXA1 is important in the microglial clearance of apoptotic neurons in both noninflammatory and inflammatory conditions. ⋯ In particular, we showed that microglial-derived ANXA1 targets apoptotic neurons, serving as both an "eat me" signal and a bridge between phosphatidylserine on the dying cell and formyl peptide receptor 2 on the phagocytosing microglia. Moreover, inflammatory activation of microglia impairs their ability to discriminate between apoptotic and nonapoptotic cells, an ability restored by exogenous ANXA1. We thus show that ANXA1 is fundamental for brain homeostasis, and we suggest that ANXA1 and its peptidomimetics can be novel therapeutic targets in neuroinflammation.
-
Joint destruction in arthritis is in part due to the induction of matrix metalloproteinase (MMP) expression and their inhibitors, especially MMP-13 and -3, which directly degrade the cartilage matrix. Although IL-1β is considered as the main catabolic factor involved in MMP-13 and -3 expression, the role of PGE(2) remains controversial. The goal of this study was to determine the role of PGE(2) on MMP synthesis in articular chondrocytes using mice lacking microsomal PGE synthase-1 (mPGES-1), which catalyses the rate-limiting step of PGE(2) synthesis. ⋯ Finally, in mPGES-1(-/-) chondrocytes treated by forskolin, MMP-3 protein expression was significantly decreased compared with wild-type, suggesting that PGE(2) regulates MMP-3 expression via a signaling pathway dependent on cAMP. These results demonstrate that PGE(2) plays a key role in the induction of MMP-3 and MMP-13 in an inflammatory context. Therefore, mPGES-1 could be considered as a critical target to counteract cartilage degradation in arthritis.
-
IL-17-producing CD4(+) T (Th17) cells have been found to be increased in some human cancers; however, the possible implication of Th17 cells in regulating antitumor responses in malignant pleural effusion (MPE) remains to be elucidated. In the current study, distribution and phenotypic features of Th17 cells in both MPE and peripheral blood from patients with lung cancer were determined by flow cytometry or double immunofluorescence staining. The impacts of cytokines on Th17 cell generation and differentiation were explored. ⋯ It could be concluded that the overrepresentation of Th17 cells in MPE might be due to Th17 cell differentiation and expansion stimulated by pleural proinflammatory cytokines and to recruitment of Th17 cells from peripheral blood induced by pleural chemokines CCL20 and CCL22. Furthermore, the accumulation of Th17 cells in MPE predicted improved patient survival. These data provide the basis for developing immune-boosting strategies based on ridding the cancer patient of this cell population.
-
The complement system as well as the coagulation system has fundamental clinical implications in the context of life-threatening tissue injury and inflammation. Associations between both cascades have been proposed, but the precise molecular mechanisms remain unknown. The current study reports multiple links for various factors of the coagulation and fibrinolysis cascades with the central complement components C3 and C5 in vitro and ex vivo. ⋯ Addition of FXa to human serum or plasma activated complement ex vivo, represented by the generation of C3a, C5a, and the terminal complement complex, and decreased complement hemolytic serum activity that defines exact serum concentration that results in complement-mediated lysis of 50% of sensitized sheep erythrocytes. Furthermore, in plasma from patients with multiple injuries (n = 12), a very early appearance and correlation of coagulation (thrombin-antithrombin complexes) and the complement activation product C5a was found. The present data suggest that coagulation/fibrinolysis proteases may act as natural C3 and C5 convertases, generating biologically active anaphylatoxins, linking both cascades via multiple direct interactions in terms of a complex serine protease system.