The Journal of immunology : official journal of the American Association of Immunologists
-
NK cells are essential for health, yet little is known about human NK turnover in vivo. In both young and elderly women, all NK subsets proliferated and died more rapidly than T cells. CD56(bright) NK cells proliferated rapidly but died relatively slowly, suggesting that proliferating CD56(bright) cells differentiate into CD56(dim) NK cells in vivo. ⋯ Killer cell Ig-like receptor expression increased with age on T cells but not on NK cells. Although the percentage of CD56(bright) NK cells declined with age and the percentage of CD56(dim) NK cells increased with age, there were no significant age-related proliferation or apoptosis differences for these two populations or for total NK cells. In vivo human NK cell turnover is rapid in both young and elderly adults.
-
The importance of proresolving mediators in the overall context of the resolution of acute inflammation is well recognized, although little is known about whether these anti-inflammatory and proresolving molecules act in concert. In this article, we focused on lipoxin A(4) (LXA(4)) and annexin A1 (AnxA1) because these two very different mediators converge on a single receptor, formyl peptide receptor type 2 (FPR2/ALX). Addition of LXA(4) to human polymorphonuclear leukocytes (PMNs) provoked a concentration- and time-dependent mobilization of AnxA1 onto the plasma membrane, as determined by Western blotting and flow cytometry analyses. ⋯ Intravital microscopy investigations of the inflamed mesenteric microvasculature of wild-type and AnxA1(-/-) mice revealed that LXA(4) provoked leukocyte detachment from the postcapillary venule endothelium in the former (>50% within 10 min; p < 0.05), but not the latter genotype (∼15%; NS). Furthermore, recruitment of Gr1(+) cells into dorsal air-pouches, inflamed with IL-1β, was significantly attenuated by LXA(4) in wild-type, but not AnxA1(-/-), mice. Collectively, these data prompt us to propose the existence of an endogenous network in anti-inflammation centered on PMN AnxA1 and activated by selective FPR2/ALX agonists.
-
Macrophage migration inhibitory factor (MIF) promotes leukocyte recruitment to sites of inflammation. However, whether this stems from a direct effect on leukocyte migration is unknown. Furthermore, the role of the MIF-binding protein CD74 in this response has not been investigated. ⋯ In in vivo experiments assessing the link between MIF and CD74, combined administration of MIF and CCL2 increased leukocyte adhesion in both MIF(-/-) and CD74(-/-) mice, showing that CD74 was not required for this MIF-induced response. Additionally, although leukocyte recruitment induced by administration of MIF alone was reduced in CD74(-/-) mice, consistent with a role for CD74 in leukocyte recruitment induced by MIF, MIF-treated CD74(-/-) mice displayed residual leukocyte recruitment. These data demonstrate that MIF and CD74 play previously unappreciated roles in CCL2-induced macrophage adhesion and migration, and they indicate that MIF and CD74 mediate this effect via both common and independent mechanisms.
-
Classically, sympathetic and parasympathetic systems act in opposition to maintain the physiological homeostasis. In this article, we report that both systems work together to restrain systemic inflammation in life-threatening conditions such as sepsis. ⋯ Splenic nerve stimulation mimics vagal and cholinergic induction of norepinephrine and re-establishes neuromodulation in α7 nicotinic acetylcholine receptor (α7nAChR)-deficient animals. Thus, vagus nerve and cholinergic agonists inhibit systemic inflammation by activating the noradrenergic splenic nerve via the α7nAChR nicotinic receptors. α7nAChR represents a unique molecular link between the parasympathetic and sympathetic system to control inflammation.