The Journal of immunology : official journal of the American Association of Immunologists
-
TLR4, a membrane receptor that functions in complex with its accessory protein myeloid differentiation factor-2 (MD-2), is a therapeutic target for bacterial infections. Taiwanofungus camphoratus is highly valued as a medicinal mushroom for cancer, hypertension, and inflammation in traditional medicine. Zhankuic acid A (ZAA) is the major pharmacologically active compound of T. camphoratus. ⋯ Binding of ZAA to MD-2 reduced Ab recognition to native MD-2, similar to the effect of LPS binding. Furthermore, ZAA significantly ameliorated LPS-induced endotoxemia and Salmonella-induced diarrhea in mice. Our results suggest that ZAA, which can compete with LPS for binding to MD-2 as a TLR4/MD-2 antagonist, may be a potential therapeutic agent for gram-negative bacterial infections.
-
Polymicrobial sepsis induces organ failure and is accompanied by overwhelming inflammatory response and impairment of microbial killing. Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear receptor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. The insulin-sensitizing drugs thiazolidinediones (TZDs) are specific PPAR-γ agonists. ⋯ These data demonstrate that the primary mechanism by which pioglitazone protects against polymicrobial sepsis is through the impairment of MyD88 responses. This appears to represent a novel regulatory program. In this regard, pioglitazone provides advantages as a therapeutic tool, because it improves different aspects of host defense during sepsis, ultimately enhancing survival.
-
Traumatic brain injury (TBI) is the leading cause of disability and death in young adults. The secondary neuroinflammation and neuronal damage that follows the primary mechanical injury is an important cause of disability in affected people. The membrane attack complex (MAC) of the complement system is detected in the traumatized brain early after TBI; however, its role in the pathology and neurologic outcome of TBI has not yet been investigated. ⋯ These data provide the first evidence, to our knowledge, that inhibition of MAC formation in otherwise complement-sufficient animals reduces neuropathology and promotes neurologic recovery after TBI. Given the importance of maintaining a functional complement opsonization system to fight infections, a critical complication in TBI patients, inhibition of the MAC should be considered to reduce posttraumatic neurologic damage. This work identifies a novel therapeutic target for TBI and will guide the development of new therapy for patients.