The Journal of immunology : official journal of the American Association of Immunologists
-
Exosomes are nanovesicles originating from multivesicular bodies that are secreted by a variety of cell types. The dual capability of exosomes to promote immunity or to induce tolerance has prompted their clinical use as vehicles for vaccination against different human diseases. In the present study, the effect of allergen-specific exosomes from tolerized mice on the development of allergen-induced allergic response was determined using a mouse model. ⋯ This protective effect was associated with a concomitant increase in the expression of the regulatory cytokine TGF-beta. These observations demonstrate that exosomes can induce tolerance and protection against allergic sensitization in mice. Thus, exosome-based vaccines could represent an alternative to conventional therapy for allergic diseases in humans.
-
Differentiation to Ab secreting and isotype-switched effector cells is tightly linked to cell division and therefore the degree of proliferation strongly influences the nature of the immune response. The maximum number of divisions reached, termed the population division destiny, is stochastically distributed in the population and is an important parameter in the quantitative outcome of lymphocyte responses. In this study, we further assessed the variables that regulate B cell division destiny in vitro in response to T cell- and TLR-dependent stimuli. ⋯ This limit was linked directly to division number rather than time of exposure to stimulation and operated independently of the survival regulation of the cells. These results demonstrate that a B cell population's division destiny is regulable by the stimulatory conditions up to an inherent maximum value. Division destiny is a crucial parameter in regulating the extent of B cell responses and thereby also the nature of the immune response mounted.
-
The P2X7 receptor (P2X7R), an ATP-gated ion channel, plays essential roles in the release and maturation of IL-1beta in microglial cells in the brain. Previously, we found that lysophosphatidylcholine (LPC) potentiated P2X7R-mediated intracellular signals in microglial cells. In this study, we determined whether the lysophospholipids, i.e., LPC and sphingosylphosphorylcholine (SPC), modulate the ATP-induced release and processing of IL-1beta mediated by P2X7R in mouse MG6 microglial cells. ⋯ This suggests that the impairment of the microtubule reassembly may be associated with the inhibitory effects of LPC/SPC on ATP-induced mIL-1beta release. Mutual suppression by ATP and LPC/SPC on the maturation of IL-1beta was observed in LPS-primed primary microglia. Collectively, these data suggest opposing functions by lysophospholipids, either proinflammatory or anti-inflammatory, in regard to the maturation and release of IL-1beta from microglial cells.
-
The classical tachykinin substance P (SP) has numerous potent neuroimmunomodulatory effects on all kinds of airway functions. Belonging to a class of neuromediators targeting not only residential cells but also inflammatory cells, studying SP provides important information on the bidirectional linkage between how neural function affects inflammatory events and, in turn, how inflammatory responses alter neural activity. Therefore, this study aimed to investigate the effect of local burn injury on inducing distant organ pulmonary SP release and its relevance to lung injury. ⋯ Chemokines MIP-2 and MIP-1alpha were markedly increased, suggesting the active role of SP-induced chemoattractants production in trafficking inflammatory cells. More importantly, administration of L703606, a specific NK1R antagonist, 1 h before burn injury significantly disrupted the SP-NK1R signaling and reversed pulmonary inflammation and injury. The present findings show for the first time the role of SP in contributing to exaggerated pulmonary inflammatory damage after burn injury via activation of NK1R signaling.
-
The proinflammatory IL-1 cytokines IL-1alpha, IL-1beta, and IL-18 are key mediators of the acute immune response to injury and infection. Mechanisms underlying their cellular release remain unclear. Activation of purinergic P2X(7) receptors (P2X(7)R) by extracellular ATP is a key physiological inducer of rapid IL-1beta release from LPS-primed macrophage. ⋯ We delineated two distinct release pathways: the well-known caspase-1 cascade mediating release of processed IL-1beta that was selectively blocked by inhibition of caspase-1 or panx1, and a calcium-independent, caspase-1/panx1-independent release of pro-IL-1beta that was selectively blocked by glycine. None of these release responses were associated with cell damage or cytolytic effects. This provides the first direct demonstration of a distinct signaling mechanism responsible for ATP-induced release of pro-IL-1beta.