The Journal of biological chemistry
-
Adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4)-deficient patients recently were found to have abnormally high levels of dATP, a negative allosteric effector of ribonucleotide reductase (ribonucleoside-diphosphate reductase, 2'-deoxyribonucleoside-diphosphate:oxidized thioredoxin 2'-oxidoreductase, EC 1.17.4.1). Therefore it was proposed that the immunodeficiency associated with adenosine deaminase deficiency is mediated through inhibition of ribonucleotide reductase and hence DNA replication. HeLa cells, treated with an adenosine deaminase inhibitor, erythro-9(2-hydroxy-3-nonyl)adenine, and deoxyadenosine to mimic the adenosine deaminase-deficient state, were monitored to determine directly the effects on ribonucleotide reductase activity and levels. ⋯ Removal of deoxynucleotides, particularly dATP, from these extracts increased ribonucleotide reductase activity to several-fold higher than control values. The reduced activity of ribonucleotide reductase in the simulated adenosine deaminase-deficient HeLa cells provides direct evidence for the thesis that adenosine deaminase deficiency disease is mediated through elevated levels of dATP which inhibit ribonucleotide reductase. In addition, the cell cycle patterns and ribonucleotide reductase levels suggest that the regulatory substance(s) that controls the level of ribonucleotide reductase is not operative until the late S or G2 phase of the cell cycle.