The Journal of biological chemistry
-
The addition of a purified mitochondrial pyridine nucleotide transhydrogenase enzyme preparation to complex I (NADH-CoQ reductase) results in a significant increase in the NADPH-AcPyAD+ transhydrogenase activity of the complex without influencing the NADH-AcPyAD+ transhydrogenase activity. When subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of complex I, the purified transhydrogenase enzyme preparation was found to co-migrate with the Mr = 130,000 (130K) subunit of the NADH-CoQ reductase. Loss of the NADPH-NAD+ transhydrogenase activity of complex I following limited tryptic digestion was associated with a corresponding loss of the 130K subunit from the complex. ⋯ In this interpretation, an ordered binding of substrate involves an initial NADP(H) (or NADP+ photoprobe) interaction with a hydrophobic region at the transhydrogenation site. This initial reactivity is followed by a positioning of NAD(H) (or the NAD+ photoprobe analogue) above or periphery to the NADP(H) nucleotide present at the active site region. Supportive evidence for this model for transhydrogenation is presented and discussed.