The Journal of biological chemistry
-
Pre-mRNAs for brain-expressed ionotropic glutamate receptor subunits undergo RNA editing by site-specific adenosine deamination, which alters codons for molecular determinants of channel function. This nuclear process requires double-stranded RNA structures formed by exonic and intronic sequences in the pre-mRNA and is likely to be catalyzed by an adenosine deaminase that recognizes these structures as a substrate. DRADA, a double-stranded RNA adenosine deaminase, is a candidate enzyme for L-glutamate-activated receptor channel (GluR) pre-mRNA editing. ⋯ Recombinantly expressed DRADA, both in its full-length form and in an N-terminally truncated version, edited the Q/R site in GluR6 pre-mRNA and the R/G site but not the Q/R site of GluR-B pre-mRNA. This substrate selectivity correlated with the base pairing status and sequence environment of the editing-targeted adenosines. The Q/R site of GluR-B pre-mRNA was edited by an activity partially purified from HeLa cells and thus differently structured editing sites in GluR pre-mRNAs appear to be substrates for different enzymatic activities.
-
In this study, we have examined the cellular and biochemical activities of the ceramide analog (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol (D-erythro-MAPP). Addition of 5 microM D-e-MAPP to HL-60 human promyelocytic leukemia cells resulted in a concentration- and time-dependent growth suppression accompanied by an arrest in the G0/G1 phase of the cell cycle; thus mimicking the action of exogenous ceramides. Its enantiomer L-e-MAPP was without effect. ⋯ Finally, D-e-MAPP inhibited the metabolism of L-e-MAPP in cells. These studies demonstrate that D-e-MAPP functions as an inhibitor of alkaline ceramidase in vitro and in cells resulting in elevation in endogenous levels of ceramide with the consequent biologic effects of growth suppression and cell cycle arrest. These studies point to an important role for ceramidases in the regulation of endogenous levels of ceramide.