The Journal of biological chemistry
-
The pancreatic duct expresses cystic fibrosis transmembrane conductance regulator (CFTR) and HCO3- secretory and salvage mechanisms in the luminal membrane. Although CFTR plays a prominent role in HCO3- secretion, the role of CFTR in HCO3- salvage is not known. In the present work, we used molecular, biochemical, and functional approaches to study the regulatory interaction between CFTR and the HCO3- salvage mechanism Na+/H+ exchanger isoform 3 (NHE3) in heterologous expression systems and in the native pancreatic duct. ⋯ The interaction between CFTR and NHE3 required the COOH-terminal PDZ binding motif of CFTR, and mutant CFTR proteins lacking the C terminus were not co-immunoprecipitated with NHE3. Furthermore, when expressed in PS120 cells, wild type CFTR, but not CFTR mutants lacking the C-terminal PDZ binding motif, augmented cAMP-dependent inhibition of NHE3 activity by 31%. These findings reveal that CFTR controls overall HCO3- homeostasis by regulating both pancreatic ductal HCO3- secretory and salvage mechanisms.
-
The cAMP-dependent protein kinase (PKA) is targeted to specific subcellular compartments through its interaction with A-kinase anchoring proteins (AKAPs). AKAPs contain an amphipathic helix domain that binds to the type II regulatory subunit of PKA (RII). Synthetic peptides containing this amphipathic helix domain bind to RII with high affinity and competitively inhibit the binding of PKA with AKAPs. ⋯ These proteins, ropporin (a protein previously shown to interact with the Rho signaling pathway) and AKAP-associated sperm protein, are 39% identical to each other and share a strong sequence similarity with the conserved domain on the N terminus of RII that is involved in dimerization and AKAP binding. Mutation of conserved residues in ropporin or RII prevents binding to AKAP110. These data suggest that sperm contains several proteins that bind to AKAPs in a manner similar to RII and imply that AKAPs may have additional and perhaps unique functions in spermatozoa.
-
Progression through the G1 phase of the cell cycle requires phosphorylation of the retinoblastoma gene product (pRb) by the cyclin D-dependent kinases CDK4 and CDK6, whose activity can specifically be blocked by the CDK inhibitor p16(INK4A). Misregulation of the pRb/cyclin D/p16(INK4A) pathway is one of the most common events in human cancer and has lead to the suggestion that inhibition of cyclin D-dependent kinase activity may have therapeutic value as an anticancer treatment. Through screening of a chemical library, we initially identified the [2,3-d]pyridopyrimidines as inhibitors of CDK4. ⋯ Flow cytometry experiments showed that of the cell lines tested, only those expressing pRb demonstrated a G1 arrest when treated with PD 0183812. This arrest correlated in terms of incubation time and potency with a loss of pRb phosphorylation and a block in proliferation, which was reversible. These results suggest a potential use of this chemical class of compounds as therapeutic agents in the treatment of tumors with functional pRb, possessing cell cycle aberrations in other members of the pRb/cyclin D/p16(INK4A) pathway.
-
In gastric cancer, altered expression of MUC1, MUC2, MUC5AC, and MUC6 mucin genes has already been described. We show in this report by the means of in situ hybridization, reverse transcriptase-polymerase chain reaction, and transfection assays that MUC5B is also abnormally expressed in gastric carcinomatous tissues and cell lines. We thus undertook to elucidate the molecular mechanisms that regulate the transcription of MUC5B in gastric cancer cells. ⋯ MUC5B 5'-flanking region having a high GC content, influence of methylation on the MUC5B expression was assessed. Our results indicate that repression of MUC5B expression visualized in AGS cells is due in part to the presence of numerous methylated cytosine residues throughout the 5'-flanking region. Altogether these results demonstrate that MUC5B expression in gastric cancer cells is governed by a highly active distal promoter that is up-regulated by protein kinase C and that repression is under the influence of methylation.
-
The caudal homeobox gene Cdx-2 is a transcriptional activator for approximately a dozen genes specifically expressed in pancreatic islets and intestinal cells. It is also involved in preventing the development of colorectal tumors. Studies using "knockout" approaches demonstrated that Cdx-2 is haplo-insufficient in certain tissues including the intestines but not the pancreatic islets. ⋯ In contrast, Cdx-2(P)OCT cannot act as an enhancer element if it is fused to a thymidine kinase promoter. Furthermore, Cdx-2(P)OCT-thymidine kinase fusion promoters cannot be activated by OCT1 co-transfection. Cell type-specific expression, cell type-specific binding affinity of POU proteins to the cis-element Cdx-2(P)OCT, and the DNA content-dependent activation of Cdx-2 promoter via Cdx-2(P)OCT by OCT1 suggest that POU proteins play important and complicated roles in modulating Cdx-2 expression in cell type-specific manners.