The Journal of biological chemistry
-
Human neutrophil proteases cathepsin G and elastase can directly alter platelet function and/or participate in coagulation cascade reactions on the platelet or neutrophil surface to enhance fibrin formation. The clotting of recalcified platelet-free plasma (PFP) or platelet-rich plasma (PRP) supplemented with corn trypsin inhibitor (to shut down contact activation) was studied in well-plates or flow assays. Inhibitors of cathepsin G or elastase significantly delayed the burst time (t(50)) of thrombin generation in neutrophil-supplemented PRP from 49 min to 59 and 77 min, respectively, in well-plate assays as well as reduced neutrophil-promoted fibrin deposition on fibrinogen-adherent platelets under flow conditions. ⋯ Whereas perfusion of PFP (gamma(w) = 62.5 s(-1)) over fibrinogen-adherent platelets did not result in fibrin formation until 50 min, massive fibrin could be observed on cathepsin G-treated platelets even at 35 min. Cathepsin G addition to corn trypsin inhibitor-treated PFP produced little thrombin unless anionic phospholipid was present. However, further activation inhibition studies indicated that cathepsin G enhances fibrin deposition under flow conditions by elevating the activation state of fibrinogen-adherent platelets rather than by cleaving coagulation factors.
-
We recently identified a novel mechanism for modulation of the phosphorylation state and function of the N-methyl-d-aspartate (NMDA) receptor via the scaffolding protein RACK1. We found that RACK1 binds both the NR2B subunit of the NMDA receptor and the nonreceptor protein-tyrosine kinase, Fyn. RACK1 inhibits Fyn phosphorylation of NR2B and decreases NMDA receptor-mediated currents in CA1 hippocampal slices (Yaka, R., Thornton, C., Vagts, A. ⋯ Nuclear RACK1 in turn was found to regulate the expression of brain-derived neurotrophic factor induced by PACAP(1-38). Taken together our results suggest that activation of adenylate cyclase by PACAP(1-38) results in the release of RACK1 from the NMDA receptor and Fyn. This in turn leads to NMDA receptor phosphorylation, enhanced activity mediated by Fyn, and to the induction of brain-derived neurotrophic factor expression by RACK1.