The Journal of biological chemistry
-
Oxidant stress and phospholipase A2 (PLA2) activation have been implicated in numerous proinflammatory responses of the mesangial cell (MC). We investigated the cross-talk between group IValpha cytosolic PLA2 (cPLA2alpha) and secretory PLA2s (sPLA2s) during H2O2-induced arachidonic acid (AA) release using two types of murine MC: (i). MC+/+, which lack group IIa and V PLA2s, and (ii). ⋯ By contrast, H2O2-induced AA release was not enhanced when ERK1/2 was activated by infection of MC+/+ with constitutively active MEK1-DD. We conclude that the effect of group IIa and V PLA2s on H2O2-induced AA release is dependent upon the presence of cPLA2alpha and the activation of PKC and ERK1/2. Group IIa and V PLA2s are regulatory and cPLA2alpha is responsible for AA release.
-
Thyroid-stimulating hormone (TSH) regulates the growth and differentiation of thyrocytes by activating the TSH receptor (TSHR). This study investigated the roles of the phosphatidylinositol 3-kinase (PI3K), PDK1, FRAP/mammalian target of rapamycin, and ribosomal S6 kinase 1 (S6K1) signaling mechanism by which TSH and the stimulating type TSHR antibodies regulate thyrocyte proliferation and the follicle activities in vitro and in vivo. The TSHR immunoprecipitates exhibited PI3K activity, which was higher in the cells treated with either TSH or 8-bromo-cAMP. ⋯ In addition, rapamycin treatment in vivo inhibited the TSH-stimulated thyroid follicle hyperplasia and follicle activity. These findings suggest an interaction between TSHR and PI3K, which is stimulated by TSH and cAMP and might involve the downstream S6K1 but not Akt/protein kinase B. This pathway may play a role in the TSH/stimulating type TSH receptor antibody-mediated thyrocyte proliferation in vitro and in the response to TSH in vivo.