The Journal of biological chemistry
-
The prostaglandin E2 receptor subtype EP4 has been implicated in the growth and progression of human non-small cell lung carcinoma (NSCLC). However, the factors that control its expression have not been entirely elucidated. Our studies show that NSCLC cells express peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) protein and that treatment with a selective PPARbeta/delta agonist (GW501516) increases EP4 mRNA and protein levels. ⋯ Finally, we showed that pretreatment of NSCLC with GW501516 further increased NSCLC cell proliferation in response to exogenous dimethyl-prostaglandin E2 (PGE2) that was diminished in the presence of PPARbeta/delta antisense and EP4 siRNA. Taken together, these findings suggest that activation of PPARbeta/delta induces PGE2 receptor subtype EP4 expression through PI3-K signals and increases human lung carcinoma cell proliferation in response to PGE2. The increase in transcription of the EP4 gene by PPARbeta/delta agonist was associated with increased C/EBP binding activity in the NF-IL6 site of EP4 promoter region and C/EBPbeta protein expression that were mediated through both PI3-K/Akt and PPARbeta/delta signaling pathways.
-
As a primary target for opioid drugs and peptides, the mu opioid receptor (OPRM1) plays a key role in pain perception and addiction. Genetic variants of OPRM1 have been implicated in predisposition to drug addiction, in particular the single nucleotide polymorphism A118G, leading to an N40D substitution, with an allele frequency of 10-32%, and uncertain functions. We have measured allele-specific mRNA expression of OPRM1 in human autopsy brain tissues, using A118G as a marker. ⋯ After transfection and inhibition of transcription with actinomycin D, analysis of mRNA turnover failed to reveal differences in mRNA stability between A118 and G118 alleles, indicating a defect in transcription or mRNA maturation. These results indicate that OPRM1-G118 is a functional variant with deleterious effects on both mRNA and protein yield. Clarifying the functional relevance of polymorphisms associated with susceptibility to a complex disorder such as drug addiction provides a foundation for clinical association studies.
-
The integral membrane protein p22phox is an indispensable component of the superoxide-generating phagocyte NADPH oxidase, whose catalytic core is the membrane-associated gp91phox (also known as Nox2). p22phox associates with gp91phox and, through its proline-rich C terminus, provides a binding site for the tandem Src homology 3 domains of the activating subunit p47phox. Whereas p22phox is expressed ubiquitously, its participation in regulating the activity of other Nox enzymes is less clear. This study investigates the requirement of p22phox for Nox enzyme activity and explores the role of its proline-rich region (PRR) for regulating activity. ⋯ Expression of p22phox (P156Q) inhibited NOXO1-stimulated Nox3 activity, but co-expression of NOXA1 overcame the inhibitory effect. The P157Q and P160Q mutations of p22phox showed selective inhibition of Nox2/p47phox/p67phox, and selectivity was specific for the organizing subunit (p47phox or NOXO1) rather than the Nox catalytic subunit. These studies stress the importance of p22phox for the function of Nox1, Nox2, Nox3, and Nox4, and emphasize the key role of the PRR for regulating Nox proteins whose activity is dependent upon p47phox or NOXO1.
-
NADPH-cytochrome P450 reductase (CPR) is an essential component for the function of many enzymes, including microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. In liver-Cpr-null (with liver-specific Cpr deletion) and Cpr-low (with reduced CPR expression in all organs examined) mouse models, a reduced serum cholesterol level and an induction of hepatic P450s were observed, whereas hepatomegaly and fatty liver were only observed in the liver-Cpr-null model. Our goal was to identify hepatic gene expression changes related to these phenotypes. ⋯ We also recognized the 12 gene ontology terms that contained the most significantly changed gene expression in at least one of the two mouse models. We further uncovered potential mechanisms, such as an increased activation of constitutive androstane receptor and a decreased activation of peroxisomal proliferator-activated receptor-alpha by precursors of cholesterol biosynthesis, that underlie common changes (e.g. induction of multiple P450s and suppression of genes for fatty acid metabolism) in response to CPR loss in the two mouse models. Additionally, we observed model-specific gene expression changes, such as the induction of a fatty-acid translocase (Cd36 antigen) and the suppression of carnitine O-palmitoyltransferase 1 (Cpt1a) and acyl-CoA synthetase long chain family member 1 (Acsl1), that are potentially responsible for the severe hepatic lipidosis and an altered fatty acid profile observed in liver-Cpr-null mice.