The Journal of biological chemistry
-
The uptake of arachidonoyl ethanolamide (anandamide, AEA) in rat basophilic leukemia cells (RBL-2H3) has been proposed to occur via a saturable transporter that is blocked by specific inhibitors. Measuring uptake at 25 s, when fatty acid amide hydrolase (FAAH) does not appreciably affect uptake, AEA accumulated via a nonsaturable mechanism at 37 degrees C. Interestingly, saturation was observed when uptake was plotted using unbound AEA at 37 degrees C. ⋯ At 5 min, the putative transport inhibitors did not reduce AEA uptake in FAAH chemical knock-out cells. This strongly suggests that the target of UCM707, VDM11, OMDM2, and AM1172 is not a transporter at the plasma membrane but rather FAAH, or an uncharacterized intracellular component that delivers AEA to FAAH. This system is therefore unique among neuro/immune modulators because AEA, an uncharged hydrophobic molecule, diffuses into cells and partial inhibition of FAAH has a pronounced effect upon its uptake.