The Journal of biological chemistry
-
Temperature signaling can be initiated by members of transient receptor potential family (thermo-TRP) channels. Hot and cold substances applied to teeth usually elicit pain sensation. This study investigated the expression of thermo-TRP channels in dental primary afferent neurons of the rat identified by retrograde labeling with a fluorescent dye in maxillary molars. ⋯ Immunohistochemistry and single cell reverse transcription-PCR following whole cell recordings provided direct evidence for the association between the responsiveness to thermo-TRP ligands and expression of thermo-TRP channels. The results suggest that activation of thermo-TRP channels expressed by dental afferent neurons contributes to tooth pain evoked by temperature stimuli. Accordingly, blockade of thermo-TRP channels will provide a novel therapeutic intervention for the treatment of tooth pain.
-
Mutations that impair the expression and/or function of gamma-aminobutyric acid type A (GABAA) receptors can lead to epilepsy. The familial epilepsy gamma2(K289M) mutation affects a basic residue conserved in the TM2-3 linker of most GABAA subunits. We investigated the effect on expression and function of the Lys --> Met mutation in mouse alpha1(K278M), beta2(K274M), and gamma2(K289M) subunits. ⋯ The beta2(K274M) construct was unique in that it reduced the efficacy of propofol activation relative to GABA. These data suggest that the alpha1 subunit Lys-278 residue plays a pivotal role in channel gating that is not dependent on occupancy of the GABA binding site. Moreover, the conserved TM2-3 loop lysine has an asymmetric function in different GABAA subunits.
-
Glycogen synthase kinase-3beta (GSK-3beta) is a serine/threonine kinase with a broad array of cellular targets, such as cytoskeletal proteins and transcription factors. Recent studies with GSK-3beta-null mice showed impaired NFkappaB-mediated survival responses. Because NFkappaB serves a dual role as a key regulator of cytokine-induced inflammatory gene expression and apoptosis, we investigated whether modulation of GSK-3beta expression affects cytokine-induced and NFkappaB-mediated inflammatory gene expression. ⋯ Overexpression of GSK-3beta did not affect the TNF-alpha-induced nuclear translocation of NFkappaB but reduced the nuclear half-life of TNF-alpha-induced NFkappaB considerably (by as much as 9 h) and enhanced phosphorylation (by as much as 33%). Interestingly, neither endothelial cell survival nor NFkappaB-mediated expression of anti-apoptotic genes was affected by GSK-3beta overexpression. We conclude that GSK-3beta selectively regulates NFkappaB-mediated inflammatory gene expression by controlling the flow of NFkappaB activity between transcription of inflammatory and survival genes.
-
In fast-spiking neurons such as those in the medial nucleus of the trapezoid body (MNTB) in the auditory brainstem, Kv3.1 potassium channels are required for high frequency firing. The Kv3.1b splice variant of this channel predominates in the mature nervous system and is a substrate for phosphorylation by protein kinase C (PKC) at Ser-503. In resting neurons, basal phosphorylation at this site decreases Kv3.1 current, reducing neuronal ability to follow high frequency stimulation. ⋯ We also measured the time course of dephosphorylation and recovery of basal phosphorylation of Kv3.1b following brief high frequency electrical stimulation of the trapezoid body, and we determined that the recovery process is mediated by both novel PKC-delta and PKC-epsilon isozymes and by conventional PKCs. The association between Kv3.1b and PKC isozymes was confirmed by reciprocal coimmunoprecipitation of Kv3.1b with multiple PKC isozymes. Our results suggest that the Kv3.1b channel is regulated by both conventional and novel PKC isozymes and that novel PKC-delta contributes specifically to the maintenance of basal phosphorylation in auditory neurons.
-
RGS9-2, a member of the R7 regulators of G protein signaling (RGS) protein family of neuronal RGS, is a critical regulator of G protein signaling. In striatal neurons, RGS9-2 is tightly associated with a novel palmitoylated protein, R7BP (R7 family binding protein). Here we report that R7BP acts to target the localization of RGS9-2 to the plasma membrane. ⋯ In differentiated neurons, the C-terminal targeting motif of R7BP was found to be essential for mediating its postsynaptic localization. In addition to the plasma membrane targeting elements, we identified two functional nuclear localization sequences that can mediate the import of R7BP into the nucleus upon depalmitoylation. These findings provide a mechanism for the subcellular targeting of RGS9-2 in neurons.