The Journal of biological chemistry
-
The lipocalin alpha(1)-microglobulin (alpha(1)m) is a 26-kDa glycoprotein present in plasma and in interstitial fluids of all tissues. The protein was recently shown to have reductase properties, reducing heme-proteins and other substrates, and was also reported to be involved in binding and scavenging of heme and tryptophan metabolites. To investigate its possible role as a reductant of organic radicals, we have studied the interaction of alpha(1)m with the synthetic radical, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS radical). ⋯ Both reactions were dependent on the thiolate group of the cysteine residue in position 34 of the alpha(1)m polypeptide. Our results indicate that alpha(1)m is involved in a sequential reduction of ABTS radicals followed by trapping of these radicals by covalent attachment. In combination with the reported physiological properties of the protein, our results suggest that alpha(1)m may be a radical reductant and scavenger in vivo.
-
Peptide neurotoxins from cone snails continue to supply compounds with therapeutic potential. Although several analgesic conotoxins have already reached human clinical trials, a continuing need exists for the discovery and development of novel non-opioid analgesics, such as subtype-selective sodium channel blockers. Micro-conotoxin KIIIA is representative of micro-conopeptides previously characterized as inhibitors of tetrodotoxin (TTX)-resistant sodium channels in amphibian dorsal root ganglion neurons. ⋯ Both Na(V)1.2 and Na(V)1.6 were strongly blocked; within experimental wash times of 40-60 min, block was reversed very little for Na(V)1.2 and only partially for Na(V)1.6. Other isoforms were blocked reversibly: Na(V)1.3 (IC50 8 microM), Na(V)1.5 (IC50 284 microM), and Na(V)1.4 (IC50 80 nM). "Alanine-walk" and related analogs were synthesized and tested against both Na(V)1.2 and Na(V)1.4; replacement of Trp-8 resulted in reversible block of Na(V)1.2, whereas replacement of Lys-7, Trp-8, or Asp-11 yielded a more profound effect on the block of Na(V)1.4 than of Na(V)1.2. Taken together, these data suggest that KIIIA is an effective tool to study structure and function of Na(V)1.2 and that further engineering of micro-conopeptides belonging to the KIIIA group may provide subtype-selective pharmacological compounds for mammalian neuronal sodium channels and potential therapeutics for the treatment of pain.
-
The preservation of vascular endothelial cell (EC) barrier integrity is critical to normal vessel homeostasis, with barrier dysfunction being a feature of inflammation, tumor angiogenesis, atherosclerosis, and acute lung injury. Therefore, agents that preserve or restore vascular integrity have important therapeutic implications. In this study, we explored the regulation of hepatocyte growth factor (HGF)-mediated enhancement of EC barrier function via CD44 isoforms. ⋯ In addition, silencing Tiam1 or dynamin 2 reduced HGF-induced Rac1 activation, cortactin recruitment to CEM, and EC barrier regulation. We observed that both HGF- and high molecular weight hyaluronan (CD44 ligand)-mediated protection from lipopolysaccharide-induced pulmonary vascular hyperpermeability was significantly reduced in CD44 knock-out mice, thus validating these in vitro findings in an in vivo murine model of inflammatory lung injury. Taken together, these results suggest that CD44 is an important regulator of HGF/c-Met-mediated in vitro and in vivo barrier enhancement, a process with essential involvement of Tiam1, Rac1, dynamin 2, and cortactin.
-
The epithelial sodium channel (ENaC) plays an important role in transepithelial Na(+) absorption; hence its function is essential for maintaining Na(+) and fluid homeostasis and regulating blood pressure. Insulin is one of the hormones that regulates activity of ENaC. In this study, we investigated the contribution of two related protein kinases, Akt (also known as protein kinase B) and the serum- and glucocorticoid-dependent kinase (Sgk), on insulin-induced ENaC activity in Fisher rat thyroid cells expressing ENaC. ⋯ Conversely, overexpression of Akt1 or Sgk1 increased expression of ENaC at the cell membrane and overcame the inhibitory effect of Nedd4-2 on ENaC. Furthermore, mutation of consensus phosphorylation sites on Nedd4-2 for Akt1 and Sgk1, Ser(342) and Ser(428), completely abolished the inhibitory effect of Sgk1 and Akt1 on Nedd4-2 action. Together these data suggest that both Akt and Sgk are components of an insulin signaling pathway that increases Na(+) absorption by up-regulating membrane expression of ENaC via a regulatory system that involves inhibition of Nedd4-2.