The Journal of biological chemistry
-
Pathology data from the anthrax animal models show evidence of significant increases in vascular permeability coincident with hemostatic imbalances manifested by thrombocytopenia, transient leucopenia, and aggressive disseminated intravascular coagulation. In this study we hypothesized that anthrax infection modulates the activity of von Willebrand factor (VWF) and its endogenous regulator ADAMTS13, which play important roles in hemostasis and thrombosis, including interaction of endothelial cells with platelets. We previously demonstrated that purified anthrax neutral metalloproteases Npr599 and InhA are capable of cleaving a variety of host structural and regulatory proteins. ⋯ In addition, Western blot analysis shows proteolytic depletion of ADAMTS13 from plasma of spore-challenged mice despite its increased expression in the liver. Our results suggest a new mechanism of anthrax coagulopathy affecting the levels and functional activities of both VWF and its natural regulator ADAMTS13. This mechanism may contribute to hemorrhage and thrombosis typical in anthrax.
-
Transient receptor potential V1 (TRPV1) is a nonselective cation channel expressed in nociceptors and activated by capsaicin. TRPV1 detects diverse stimuli, including acid, heat, and endogenous vanilloids, and functions as a molecular integrator of pain perception. Herein we demonstrate a novel regulatory role of extracellular Na(+) ([Na(+)](o)) on TRPV1 function. ⋯ In primary culture of porcine sensory neurons, the removal of [Na(+)](o) produced a [Ca(2+)](i) increase and current responses only in the cells responding to capsaicin. Low [Na(+)](o) evoked a [Ca(2+)](i) increase in sensory neurons of wild type mice, but not TRPV1-null mice, and in human embryonic kidney 293 cells expressing human TRPV1. The present results suggest that [Na(+)](o) negatively regulates the gating and polymodal sensitization of the TRPV1 channel. [Na(+)](o) surrounding several proton-sensitive sites on the extracellular side of the pore-forming loop of the TRPV1 channel may play an important role as a brake to suppress the excessive activity of this channel under physiological conditions.