The Journal of biological chemistry
-
The principal protein of high density lipoprotein (HDL), apolipoprotein (apo) A-I, in the lipid-free state contains two tertiary structure domains comprising an N-terminal helix bundle and a less organized C-terminal domain. It is not known how the properties of these domains modulate the formation and size distribution of apoA-I-containing nascent HDL particles created by ATP-binding cassette transporter A1 (ABCA1)-mediated efflux of cellular phospholipid and cholesterol. To address this issue, proteins corresponding to the two domains of human apoA-I (residues 1-189 and 190-243) and mouse apoA-I (residues 1-186 and 187-240) together with some human/mouse domain hybrids were examined for their abilities to form HDL particles when incubated with either ABCA1-expressing cells or phospholipid multilamellar vesicles. ⋯ Variations in apoA-I domain structure and physical properties exerted similar effects on the rates of formation and sizes of HDL particles created by either spontaneous solubilization of phospholipid multilamellar vesicles or the ABCA1-mediated efflux of cellular lipids. It follows that the sizes of nascent HDL particles are determined at the point at which cellular phospholipid and cholesterol are solubilized by apoA-I; apparently, this is the rate-determining step in the overall ABCA1-mediated cellular lipid efflux process. The stability of the apoA-I N-terminal helix bundle domain and the hydrophobicity of the C-terminal domain are important determinants of both nascent HDL particle size and their rate of formation.
-
Expression of aquaporin-1 (AQP1) and -2 (AQP2) channels in the kidney are critical for the maintenance of water homeostasis and the operation of the urinary concentrating mechanism. Hypertonic stress induced in inner medullary (IMCD3) cells by addition of NaCl to the medium substantially up-regulated the mRNA and protein expression of AQP1, suggesting that its activation occurs at a transcriptional and a translational levels. In contrast, no up-regulation of AQP1 was observed when these cells were exposed to the same tonicity by addition of urea. ⋯ Single site-directed mutation of this TonE site led to a 54 ± 5% (p < 0.01) decrease in AQP1 luciferase-driven activity under hypertonic stress. TonEBP mutant mice display marked decrement in the expression of AQP1 in the inner medulla. In conclusion, these data demonstrate that TonEBP is necessary for the regulation of AQP1 expression in the inner medulla of the kidney under hypertonic conditions.
-
Scorpion β-toxin 4 from Centruroides suffusus suffusus (Css4) enhances the activation of voltage-gated sodium channels through a voltage sensor trapping mechanism by binding the activated state of the voltage sensor in domain II and stabilizing it in its activated conformation. Here we describe the antagonist and partial agonist properties of a mutant derivative of this toxin. Substitution of seven different amino acid residues for Glu(15) in Css4 yielded toxin derivatives with both increased and decreased affinities for binding to neurotoxin receptor site 4 on sodium channels. ⋯ The effects of Css4(E15R) are fit well by a three-step model of toxin action involving concentration-dependent toxin binding to its receptor site followed by depolarization-dependent activation of the voltage sensor and subsequent voltage sensor trapping. Because it is a partial agonist with much reduced efficacy for voltage sensor trapping, Css4(E15R) can antagonize the effects of wild-type Css4 on sodium channel activation and can prevent paralysis by Css4 when injected into mice. Our results define the first partial agonist and antagonist activities for scorpion toxins and open new avenues of research toward better understanding of the structure-function relationships for toxin action on sodium channel voltage sensors and toward potential toxin-based therapeutics to prevent lethality from scorpion envenomation.