The Journal of biological chemistry
-
Peroxisome proliferator-activated receptor-gamma (PPAR gamma) is a ligand-activated transcription factor of the nuclear hormone receptor superfamily. Increasing evidence suggests that PPAR gamma is involved in the regulation of vascular function and blood pressure in addition to its well recognized role in metabolism. ⋯ Recent studies using genetically manipulated mouse models have begun to specifically address the importance of PPAR gamma in the vasculature. In this minireview, evidence for a protective role of PPAR gamma in the endothelium and vascular smooth muscle, derived largely from studies of genetically manipulated mice, will be discussed.
-
Enhancement of gamma-aminobutyric acid type A receptor (GABA(A)R)-mediated inhibition is a property of most general anesthetics and a candidate for a molecular mechanism of anesthesia. Intravenous anesthetics, including etomidate, propofol, barbiturates, and neuroactive steroids, as well as volatile anesthetics and long-chain alcohols, all enhance GABA(A)R function at anesthetic concentrations. The implied existence of a receptor site for anesthetics on the GABA(A)R protein was supported by identification, using photoaffinity labeling, of a binding site for etomidate within the GABA(A)R transmembrane domain at the beta-alpha subunit interface; the etomidate analog [(3)H]azietomidate photolabeled in a pharmacologically specific manner two amino acids, alpha1Met-236 in the M1 helix and betaMet-286 in the M3 helix (Li, G. ⋯ Inhibition by barbiturates, which was pharmacologically specific and stereospecific, and by propofol was only partial, consistent with allosteric interactions, whereas isoflurane inhibition was nearly complete, apparently competitive. Protein sequencing showed that propofol inhibited to the same extent the photolabeling of alpha1Met-236 and betaMet-286. These results indicate that several classes of general anesthetics modulate etomidate binding to the GABA(A)R: isoflurane binds directly to the site with millimolar affinity, whereas propofol and barbiturates inhibit binding but do not bind in a mutually exclusive manner with etomidate.
-
Recent epidemiological studies have found that androgen deficiency is associated with a higher incidence of cardiovascular disease in men. However, little is known about the mechanism underlying the cardioprotective effects of androgens. Here we show the inhibitory effects of testosterone on vascular calcification and a critical role of androgen receptor (AR)-dependent transactivation of growth arrest-specific gene 6 (Gas6), a key regulator of inorganic phosphate (P(i))-induced calcification of vascular smooth muscle cells (VSMC). ⋯ Site-specific mutation revealed that the proximal ARE was essential for androgen-dependent transactivation of Gas6. Furthermore, chromatin immunoprecipitation assays demonstrated ligand-dependent binding of the AR to the proximal ARE of Gas6. These results indicate that AR signaling directly regulates Gas6 transcription, which leads to inhibition of vascular calcification, and provides a mechanistic insight into the cardioprotective action of androgens.
-
Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP. ⋯ This pharmacological knockdown of soluble IFs results in the impairment of GFAP filament assembly and inhibition of cell proliferative response in Müller glia. We further show that a more severe GFAP filament assembly deficit manifests in vimentin-deficient mice, which is partly rescued by WFA. These findings illustrate WFA as a chemical probe of type III IFs and illuminate this class of withanolide as a potential treatment for diverse gliosis-dependent central nervous system traumatic injury conditions and diseases, and for orphan IF-dependent pathologies.