The Journal of biological chemistry
-
Mitogen-activated protein (MAP) kinases are critical mediators of innate immune responses. In response to lipopolysaccharide (LPS), MAP kinases are rapidly activated and play an important role in the production of proinflammatory cytokines. Although a number of MAP kinase phosphatases (MKPs) have been identified, their roles in the control of cytokine production have not been well defined. ⋯ Finally, MKP-1 was induced by a group of corticosteroids frequently prescribed for the treatment of inflammatory lung diseases, and the anti-inflammatory potencies of these drugs closely correlated with their abilities to induce MKP-1. Our studies indicated that MKP-1 plays an important role in dampening the inflammatory responses of alveolar macrophages. We speculate that MKP-1 may represent a novel target for therapeutic intervention of inflammatory lung diseases.
-
Glycosaminoglycans have been implicated in the binding and activation of a variety of growth factors, cytokines, and chemokines. In this way, glycosaminoglycans are thought to participate in events such as development and wound repair. In particular, heparin and heparan sulfate have been well studied, and specific aspects of their structure dictate their participation in a variety of activities. ⋯ Cell proliferation decreased or was abolished with higher sulfated dermatan sulfate preparations. This indicated a preference for specific dermatan sulfate oligosaccharides capable of promoting FGF-2- and FGF-7-dependent cell proliferation. These data identify critical oligosaccharides that promote specific members of the FGF family that are important for wound repair and angiogenesis.
-
Signaling pathways targeting mitochondria are poorly understood. We here examine phosphorylation by the cAMP-dependent pathway of subunits of cytochrome c oxidase (COX), the terminal enzyme of the electron transport chain. Using anti-phospho antibodies, we show that cow liver COX subunit I is tyrosinephosphorylated in the presence of theophylline, a phosphodiesterase inhibitor that creates high cAMP levels, but not in its absence. ⋯ Glucagon leads to COX inactivation, an effect also observed after incubation with adenylyl cyclase activator forskolin. Thus, the glucagon receptor/G-protein/cAMP pathway regulates COX activity. At therapeutic concentrations used for asthma relief, theophylline causes lung COX inhibition and decreases cellular ATP levels, suggesting a mechanism for its clinical action.
-
Tumor necrosis factor-alpha (TNF-alpha)-induced signaling is pivotally involved in the pathogenesis of chronic inflammatory diseases. A polymorphism in the TNF receptor 2 (TNFR2) gene resulting in a juxtamembrane inversion from methionine (TNFR2(196MET)) to arginine (TNFR2(196ARG)) has been genetically associated with an increased risk for systemic lupus erythematosus and familial rheumatoid arthritis. Albeit the mutation does not affect the TNF binding kinetics of TNFR2, the present study provides evidence that the mutation results in a significantly lower capability to induce TNFR2-mediated NF-kappaB activation. ⋯ A diminished induction of NF-kappaB-dependent target genes conveying either anti-apoptotic or pro-inflammatory functions, such as cIAP1, TRAF1, IL-6, or IL-8 is observed. The mutated form TNFR2(196ARG) shows a reduction of inducible TRAF2 recruitment upon TNF-alpha stimulation. The findings suggest a common molecular mechanism for the involvement of the TNFR2(196ARG) variant in the etiopathogenesis of different chronic inflammatory disorders.
-
Emerging evidence suggests that Ca2+ release evoked by certain G-protein-coupled receptors can be voltage-dependent; however, the relative contribution of different components of the signaling cascade to this response remains unclear. Using the electrically inexcitable megakaryocyte as a model system, we demonstrate that inositol 1,4,5-trisphosphate-dependent Ca2+ mobilization stimulated by several agonists acting via Galphaq-coupled receptors is potentiated by depolarization and that this effect is most pronounced for ADP. Voltage-dependent Ca2+ release was not induced by direct elevation of inositol 1,4,5-trisphosphate, by agents mimicking diacylglycerol actions, or by activation of phospholipase Cgamma-coupled receptors. ⋯ Although depolarization enhanced Ca2+ mobilization resulting from GTPgammaS dialysis and to a lesser extent during AlF4- or thimerosal, these effects all required the presence of P2Y1 receptors. Taken together, the voltage dependence to Ca2+ release via Galphaq-coupled receptors is not due to control of G-proteins or down-stream signals but, rather, can be explained by a voltage sensitivity at the level of the receptor itself. This effect, which is particularly robust for P2Y1 receptors, has wide-spread implications for cell signaling.