The Journal of biological chemistry
-
Progression through the G1 phase of the cell cycle requires phosphorylation of the retinoblastoma gene product (pRb) by the cyclin D-dependent kinases CDK4 and CDK6, whose activity can specifically be blocked by the CDK inhibitor p16(INK4A). Misregulation of the pRb/cyclin D/p16(INK4A) pathway is one of the most common events in human cancer and has lead to the suggestion that inhibition of cyclin D-dependent kinase activity may have therapeutic value as an anticancer treatment. Through screening of a chemical library, we initially identified the [2,3-d]pyridopyrimidines as inhibitors of CDK4. ⋯ Flow cytometry experiments showed that of the cell lines tested, only those expressing pRb demonstrated a G1 arrest when treated with PD 0183812. This arrest correlated in terms of incubation time and potency with a loss of pRb phosphorylation and a block in proliferation, which was reversible. These results suggest a potential use of this chemical class of compounds as therapeutic agents in the treatment of tumors with functional pRb, possessing cell cycle aberrations in other members of the pRb/cyclin D/p16(INK4A) pathway.
-
In gastric cancer, altered expression of MUC1, MUC2, MUC5AC, and MUC6 mucin genes has already been described. We show in this report by the means of in situ hybridization, reverse transcriptase-polymerase chain reaction, and transfection assays that MUC5B is also abnormally expressed in gastric carcinomatous tissues and cell lines. We thus undertook to elucidate the molecular mechanisms that regulate the transcription of MUC5B in gastric cancer cells. ⋯ MUC5B 5'-flanking region having a high GC content, influence of methylation on the MUC5B expression was assessed. Our results indicate that repression of MUC5B expression visualized in AGS cells is due in part to the presence of numerous methylated cytosine residues throughout the 5'-flanking region. Altogether these results demonstrate that MUC5B expression in gastric cancer cells is governed by a highly active distal promoter that is up-regulated by protein kinase C and that repression is under the influence of methylation.
-
The caudal homeobox gene Cdx-2 is a transcriptional activator for approximately a dozen genes specifically expressed in pancreatic islets and intestinal cells. It is also involved in preventing the development of colorectal tumors. Studies using "knockout" approaches demonstrated that Cdx-2 is haplo-insufficient in certain tissues including the intestines but not the pancreatic islets. ⋯ In contrast, Cdx-2(P)OCT cannot act as an enhancer element if it is fused to a thymidine kinase promoter. Furthermore, Cdx-2(P)OCT-thymidine kinase fusion promoters cannot be activated by OCT1 co-transfection. Cell type-specific expression, cell type-specific binding affinity of POU proteins to the cis-element Cdx-2(P)OCT, and the DNA content-dependent activation of Cdx-2 promoter via Cdx-2(P)OCT by OCT1 suggest that POU proteins play important and complicated roles in modulating Cdx-2 expression in cell type-specific manners.
-
Tumor necrosis factor-alpha (TNF-alpha) is a multifunctional cytokine that induces a broad spectrum of responses including angiogenesis. Angiogenesis promoted by TNF-alpha is mediated, at least in part, by ephrin A1, a member of the ligand family for Eph receptor tyrosine kinases. Although TNF-alpha induces ephrin A1 expression in endothelial cells, the signaling pathways mediating ephrin A1 induction remain unknown. ⋯ In contrast, ephrin A1 induction was blocked by inhibition of p38 mitogen-activated protein kinase (MAPK) or SAPK/JNK, but not p42/44 MAPK, using either selective chemical inhibitors or dominant-negative forms of p38 MAPK or TNF receptor-associated factor 2. These findings indicate that TNF-alpha-induced ephrin A1 expression is mediated through JNK and p38 MAPK signaling pathways. Taken together, the results of our study demonstrated that induction of ephrin A1 in endothelial cells by TNF-alpha is mediated through both p38 MAPK and SAPK/JNK, but not p42/44 MAPK or NF-kappaB, pathways.
-
The endothelial cell protein C receptor (EPCR) is an endothelial cell-specific transmembrane protein that binds both protein C and activated protein C (APC). EPCR regulates the protein C anticoagulant pathway by binding protein C and augmenting protein C activation by the thrombin-thrombomodulin complex. EPCR is homologous to the MHC class 1/CD1 family, members of which contain two alpha-helices that sit upon an 8-stranded beta-sheet platform. ⋯ Protein C activation studies on 293 cells that coexpress EPCR variants and thrombomodulin demonstrate that protein C binding to EPCR is necessary for the EPCR-dependent enhancement in protein activation by the thrombin-thrombomodulin complex. These studies indicate that EPCR has exploited the MHC class 1 fold for an alternative and possibly novel mode of ligand recognition. These studies are also the first to identify the protein C/APC binding region of EPCR and may provide useful information about molecular defects in EPCR that could contribute to cardiovascular disease susceptibility.