The Journal of biological chemistry
-
Perioperative factors including hypoxia, hypocapnia, and certain anesthetics have been suggested to contribute to Alzheimer disease (AD) neuropathogenesis. Desflurane is one of the most commonly used inhalation anesthetics. However, the effects of desflurane on AD neuropathogenesis have not been previously determined. ⋯ Finally, the Abeta aggregation inhibitor clioquinol and gamma-secretase inhibitor L-685,458 attenuated caspase-3 activation induced by desflurane/hypoxia. In summary, desflurane can induce Abeta production and caspase activation, but only in the presence of hypoxia. Pending in vivo confirmation, these data may have profound implications for anesthesia care in elderly patients, and especially those with AD.
-
Pathology data from the anthrax animal models show evidence of significant increases in vascular permeability coincident with hemostatic imbalances manifested by thrombocytopenia, transient leucopenia, and aggressive disseminated intravascular coagulation. In this study we hypothesized that anthrax infection modulates the activity of von Willebrand factor (VWF) and its endogenous regulator ADAMTS13, which play important roles in hemostasis and thrombosis, including interaction of endothelial cells with platelets. We previously demonstrated that purified anthrax neutral metalloproteases Npr599 and InhA are capable of cleaving a variety of host structural and regulatory proteins. ⋯ In addition, Western blot analysis shows proteolytic depletion of ADAMTS13 from plasma of spore-challenged mice despite its increased expression in the liver. Our results suggest a new mechanism of anthrax coagulopathy affecting the levels and functional activities of both VWF and its natural regulator ADAMTS13. This mechanism may contribute to hemorrhage and thrombosis typical in anthrax.
-
Transient receptor potential V1 (TRPV1) is a nonselective cation channel expressed in nociceptors and activated by capsaicin. TRPV1 detects diverse stimuli, including acid, heat, and endogenous vanilloids, and functions as a molecular integrator of pain perception. Herein we demonstrate a novel regulatory role of extracellular Na(+) ([Na(+)](o)) on TRPV1 function. ⋯ In primary culture of porcine sensory neurons, the removal of [Na(+)](o) produced a [Ca(2+)](i) increase and current responses only in the cells responding to capsaicin. Low [Na(+)](o) evoked a [Ca(2+)](i) increase in sensory neurons of wild type mice, but not TRPV1-null mice, and in human embryonic kidney 293 cells expressing human TRPV1. The present results suggest that [Na(+)](o) negatively regulates the gating and polymodal sensitization of the TRPV1 channel. [Na(+)](o) surrounding several proton-sensitive sites on the extracellular side of the pore-forming loop of the TRPV1 channel may play an important role as a brake to suppress the excessive activity of this channel under physiological conditions.
-
Elucidation of Abeta-lowering agents that inhibit processing of the wild-type (WT) beta-secretase amyloid precursor protein (APP) site, present in most Alzheimer disease (AD) patients, is a logical approach for improving memory deficit in AD. The cysteine protease inhibitors CA074Me and E64d were selected by inhibition of beta-secretase activity in regulated secretory vesicles that produce beta-amyloid (Abeta). The regulated secretory vesicle activity, represented by cathepsin B, selectively cleaves the WT beta-secretase site but not the rare Swedish mutant beta-secretase site. ⋯ After inhibitor treatment, the improved memory function was accompanied by reduced amyloid plaque load, decreased Abeta40 and Abeta42, and reduced C-terminal beta-secretase fragment derived from APP by beta-secretase. However, the inhibitors had no effects on any of these parameters in mice expressing the Swedish mutant beta-secretase site of APP. The notable efficacy of these inhibitors to improve memory and reduce Abeta in an AD animal model expressing the WT beta-secretase APP site present in the majority of AD patients provides support for CA074Me and E64d inhibitors as potential AD therapeutic agents.
-
Extracellular ATP, an autocrine or paracrine intercellular transmitter, is known to induce apoptosis in macrophages. However, the precise signaling mechanisms of ATP-induced apoptosis remain to be elucidated. Here we showed that activation of p38 mitogen-activated protein kinase (MAPK) plays a critical role in ATP-induced apoptosis. p38 activation and apoptosis in macrophages were induced by ATP. ⋯ Furthermore, ATP-induced ROS generation, p38 activation, and apoptosis were almost completely inhibited by selective P2X(7) receptor antagonists. We also found that ATP-induced apoptosis were diminished in ASK1-deficient macrophages accompanied by the lack of p38 activation. These results demonstrate that ROS-mediated activation of the ASK1-p38 MAPK pathway downstream of P2X(7) receptor is required for ATP-induced apoptosis in macrophages.