The Journal of biological chemistry
-
Agonist-dependent activation of G protein-coupled receptors induces diversified receptor cellular and signaling properties. Norepinephrine (NE) and epinephrine (Epi) are two endogenous ligands that activate adrenoceptor (AR) signals in a variety of physiological stress responses in animals. Here we use cardiomyocyte contraction rate response to analyze the endogenous beta(2)AR signaling induced by Epi or NE in cardiac tissue. ⋯ Moreover, inhibiting beta(2)AR phosphorylation by betaARK C terminus or dephosphorylation by okadaic acid prevented sufficient recycling and G(i) coupling. Together, our data revealed that distinct temporal phosphorylation of beta(2)AR on serine 355 and 356 by GRK2 plays a critical role for dictating receptor cellular events and signaling properties induced by Epi or NE in cardiomyocytes. This study not only helps us understand the endogenous agonist-dependent beta(2)AR signaling in animal heart but also offers an example of how G protein-coupled receptor signaling may be finely regulated by GRK in physiological settings.
-
Neural activity actively regulates muscle gene expression. This regulation is crucial for specifying muscle functionality and synaptic protein expression. How neural activity is relayed into nuclei and connected to the muscle transcriptional machinery, however, is not known. ⋯ Inactivation of HDAC4 prevents denervation-induced synaptic acetyl-choline receptor (nAChR) and MUSK transcription whereas forced expression of HDAC4 mimics denervation and activates ectopic nAChR transcription throughout myofibers. We determined that HDAC4 executes activity-dependent transcription by regulating the Dach2-myogenin transcriptional cascade where inhibition of the repressor Dach2 by HDAC4 permits the induction of the transcription factor myogenin, which in turn activates synaptic gene expression. Our findings establish HDAC4 as a neural activity-regulated deacetylase and a key signaling component that relays neural activity to the muscle transcriptional machinery.
-
Toll-like receptor (TLR) signaling is known to involve interleukin-1 receptor-associated kinases (IRAKs), however the particular role of IRAK-2 has remained unclear. Further, although IRAK-1 was originally thought to be central for the TLR-NFkappaB signaling axis, recent data have shown that it is dispensable for NFkappaB activation for some TLRs and demonstrated an alternative role for it in interferon regulatory factor activation. Here we show that IRAK-2 is critical for the TLR-mediated NFkappaB activation pathway. ⋯ Expression of IRAK-2, but not IRAK-1, led to TRAF6 ubiquitination, an event critical for NFkappaB activation. Further, IRAK-2 loss-of-function mutants, which could not activate NFkappaB, were incapable of promoting TRAF6 ubiquitination. Thus we propose that IRAK-2 plays a more central role than IRAK-1 in TLR signaling to NFkappaB.
-
MicroRNAs are short, single-stranded RNAs that arise from a transient precursor duplex. We have identified a novel activity in HeLa cell extracts that can unwind the let-7 microRNA duplex. Using partially purified material, we have shown that microRNA helicase activity requires ATP and has a native molecular mass of approximately 68 kDa. ⋯ Moreover, like its native homolog, P68 RNA helicase did not unwind an analogous small interfering RNA duplex. We further showed that knockdown of P68 inhibited let-7 microRNA function. From our data, we conclude that P68 RNA helicase is an essential component of the let-7 microRNA pathway, and in conjunction with other factors, it may play a role in the loading of let-7 microRNA into the silencing complex.
-
The lipocalin alpha(1)-microglobulin (alpha(1)m) is a 26-kDa glycoprotein present in plasma and in interstitial fluids of all tissues. The protein was recently shown to have reductase properties, reducing heme-proteins and other substrates, and was also reported to be involved in binding and scavenging of heme and tryptophan metabolites. To investigate its possible role as a reductant of organic radicals, we have studied the interaction of alpha(1)m with the synthetic radical, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS radical). ⋯ Both reactions were dependent on the thiolate group of the cysteine residue in position 34 of the alpha(1)m polypeptide. Our results indicate that alpha(1)m is involved in a sequential reduction of ABTS radicals followed by trapping of these radicals by covalent attachment. In combination with the reported physiological properties of the protein, our results suggest that alpha(1)m may be a radical reductant and scavenger in vivo.