The Journal of biological chemistry
-
The acquisition of neuronal type-specific morphogenesis is a central feature of neuronal differentiation and has important consequences for region-specific nervous system functions. Here, we report that the cell type-specific cholesterol profile determines the differential modulation of axon and dendrite outgrowths in hippocampal and cerebral cortical neurons in culture. The extent of axon and dendrite outgrowths is greater and the polarity formation occurs earlier in cortical neurons than in hippocampal neurons. ⋯ The stimulation of neurite outgrowth and polarity formation induced by cholesterol depletion was accompanied by an enhanced localization of Fyn, a Src kinase, in the lipid rafts of hippocampal neurons. A concomitant treatment with beta-cyclodextrin and a Src family kinase inhibitor, PP2, specifically blocked axon outgrowth but not dendrite outgrowth (both of which were enhanced by beta-cyclodextrin) in hippocampal neurons, suggesting that axon outgrowth modulated by cholesterol is induced in a Fyn-dependent manner. These results suggest that cellular cholesterol modulates axon and dendrite outgrowths and neuronal polarization under culture conditions and also that the difference in cholesterol profile between hippocampal and cortical neurons underlies the difference in neurite outgrowth between these two types of neurons.
-
Death-associated protein kinase (DAPK) is a calcium calmodulin-regulated serine/threonine protein kinase involved in ischemic neuronal death. In situ hybridization experiments show that DAPK mRNA expression is up-regulated in brain following a global ischemic insult and down-regulated in ischemic tissues after focal ischemia. DAPK is inactive in normal brain tissues, where it is found in its phosphorylated state and becomes rapidly and persistently dephosphorylated and activated in response to ischemia in vivo. ⋯ Moreover, concomitantly to dephosphorylation, DAPK is proteolytically processed by cathepsin after ischemia. Furthermore, a selective DAPK inhibitor is neuroprotective in both in vitro and in vivo ischemic models. These results indicate that DAPK plays a key role in mediating ischemic neuronal injury.
-
Specialized O2-sensing cells exhibit a particularly low threshold to regulation by O2 supply and function to maintain arterial pO2 within physiological limits. For example, hypoxic pulmonary vasoconstriction optimizes ventilation-perfusion matching in the lung, whereas carotid body excitation elicits corrective cardio-respiratory reflexes. It is generally accepted that relatively mild hypoxia inhibits mitochondrial oxidative phosphorylation in O2-sensing cells, thereby mediating, in part, cell activation. ⋯ In contrast, it was targeted to the plasma membrane in carotid body glomus cells. Consistent with these observations and the effects of hypoxia, stimulation of AMP-activated protein kinase by phenformin or 5-aminoimidazole-4-carboxamide-riboside elicited discrete Ca2+ signaling mechanisms in each cell type, namely cyclic ADP-ribose-dependent Ca2+ mobilization from the sarcoplasmic reticulum via ryanodine receptors in pulmonary arterial myocytes and transmembrane Ca2+ influx into carotid body glomus cells. Thus, metabolic sensing by AMP-activated protein kinase may mediate chemotransduction by hypoxia.
-
The ubiquitously expressed canonical transient receptor potential (TRPC) ion channels are considered important in Ca2+ signal generation, but their mechanisms of activation and roles remain elusive. Whereas most studies have examined overexpressed TRPC channels, we used molecular, biochemical, and electrophysiological approaches to assess the expression and function of endogenous TRPC channels in A7r5 smooth muscle cells. Real time PCR and Western analyses reveal TRPC6 as the only member of the diacylglycerol-responsive TRPC3/6/7 subfamily of channels expressed at significant levels in A7r5 cells. ⋯ Thus, TRPC6 activation probably results primarily in Na ion entry and depolarization, leading to activation of L-type channels as the mediators of Ca2+ entry. Calculations reveal that even 90% reduction of TRPC6 channels would allow depolarization sufficient to activate L-type channels. This tight coupling between TRPC6 and L-type channels is probably important in mediating smooth muscle cell membrane potential and muscle contraction.
-
Physiological and pathological changes in glucose regulate brain Akt and glycogen synthase kinase-3.
Insulin regulates the phosphorylation and activities of Akt and glycogen synthase kinase-3 (GSK3) in peripheral tissues, but in the brain it is less clear how this signaling pathway is regulated in vivo and whether it is affected by diabetes. We found that Akt and GSK3 are sensitive to glucose, because fasting decreased and glucose administration increased by severalfold the phosphorylation of Akt and GSK3 in the cerebral cortex and hippocampus of non-diabetic mice. Brain Akt and GSK3 phosphorylation also increased after streptozotocin administration (3 days), which increased blood glucose and depleted blood insulin, indicating regulation by glucose availability even with deficient insulin. ⋯ Streptozotocin-induced hyperglycemia and increased brain Akt and GSK3 phosphorylation were reversed by lowering blood glucose with insulin administration. Long term hyperglycemia also increased brain Akt and GSK3 phosphorylation, both 4 weeks after streptozotocin and in db/db insulin-resistant mice. Thus, the Akt-GSK3 signaling pathway is regulated in mouse brain in vivo in response to physiological and pathological changes in insulin and glucose.