Journal of neurochemistry
-
Journal of neurochemistry · Aug 1993
Okadaic acid induces early changes in microtubule-associated protein 2 and tau phosphorylation prior to neurodegeneration in cultured cortical neurons.
Microtubules and their associated proteins play a prominent role in many physiological and morphological aspects of brain function. Abnormal deposition of the microtubule-associated proteins (MAPs), MAP2 and tau, is a prominent aspect of Alzheimer's disease. MAP2 and tau are heat-stable phosphoproteins subject to high rates of phosphorylation/dephosphorylation. ⋯ These results suggest that the diminished rate of MAP2 and tau dephosphorylation affects the stability of the neuronal cytoskeleton. The effect of okadaic acid was not restricted to neurons. Astrocytes stained with antibodies to glial fibrillary acidic protein (GFAP) showed increased GFAP staining and changes in astrocyte morphology from a flat shape to a stellate appearance with long processes.