Journal of neurochemistry
-
Journal of neurochemistry · Oct 1996
mu-calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury.
Increasing evidence suggests that excessive activation of the calcium-activated neutral protease mu-calpain could play a major role in calcium-mediated neuronal degeneration after acute brain injuries. To further investigate the changes of the in vivo activity of mu-calpain after unilateral cortical impact injury in vivo, the ratio of the 76-kDa activated isoform of mu-calpain to its 80-kDa precursor was measured by western blotting. This mu-calpain activation ratio increased to threefold in the pellet of cortical samples ipsilateral to the injury site at 15 min, 1 h, 3 h, and 6 h after injury and returned to control levels at 24-48 h after injury. ⋯ Although mu-calpain autolysis and cytoskeletal proteolysis occurred concurrently with early morphological alterations, evidence of calpain-mediated proteolysis preceded the full expression of evolutionary histopathological changes. Our results indicate that rapid and persistent mu-calpain activation plays an important role in cortical neuronal degeneration after traumatic brain injury. Our data also suggest that specific inhibitors of calpain could be potential therapeutic agents for the treatment of traumatic brain injury in vivo.