Journal of neurochemistry
-
Journal of neurochemistry · Aug 2000
Interleukin-10 and interleukin-13 inhibit proinflammatory cytokine-induced ceramide production through the activation of phosphatidylinositol 3-kinase.
Ceramide produced by hydrolysis of plasma membrane sphingomyelin (SM) in different cells including brain cells in response to proinflammatory cytokines [tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta)] plays an important role in coordinating cellular responses to stress, growth suppression, and apoptosis. The present study underlines the importance of IL-10 and IL-13, cytokines with potent antiinflammatory properties, in inhibiting the proinflammatory cytokine (TNF-alpha and IL-1beta)-mediated degradation of SM to ceramide in rat primary astrocytes. Treatment of rat primary astrocytes with TNF-alpha or IL-1beta led to rapid degradation of SM to ceramide, whereas IL-10 and IL-13 by themselves were unable to induce the degradation of SM to ceramide. ⋯ This study suggests that the inhibition of proinflammatory cytokine-mediated degradation of SM to ceramide by IL-10 and IL-13 is mediated through the activation of PI 3-kinase. As ceramide induces apoptosis and IL-10 and IL-13 inhibit the induction of ceramide production, we examined the effect of IL-10 and IL-13 on proinflammatory cytokine-mediated apoptosis. Inhibition of TNF-alpha-induced apoptosis by IL-10 and IL-13 suggests that the antiapoptotic nature of IL-10 and IL-13 is probably due to the inhibition of ceramide production.
-
Journal of neurochemistry · Aug 2000
Preconditioning with cortical spreading depression decreases intraischemic cerebral glutamate levels and down-regulates excitatory amino acid transporters EAAT1 and EAAT2 from rat cerebal cortex plasma membranes.
We previously reported a 50% reduction in cortical infarct volume following transient focal cerebral ischemia in rats preconditioned 3 days earlier with cortical spreading depression (CSD). The mechanism of the protective effect of prior CSD remains unknown. Recent studies demonstrate reversal of excitatory amino acid transporters (EAATs) to be a principal cause for elevated extracellular glutamate levels during cerebral ischemia. ⋯ The neuronal isoform EAAT3 was unaffected by CSD. This period of down-regulation coincides with the time frame reported for induced ischemic tolerance. These data are consistent with reversal of glutamate transporter function contributing to glutamate release during ischemia and suggest that down-regulation of these transporters may contribute to ischemic tolerance induced by CSD.