Journal of neurochemistry
-
Journal of neurochemistry · Sep 2004
Comparative StudyPARP-1 gene disruption in mice preferentially protects males from perinatal brain injury.
Poly(ADP-ribose) polymerase-1 is over-activated in the adult brain in response to ischemia and contributes to neuronal death, but its role in perinatal brain injury remains uncertain. To address this issue, 7-day-old wild-type (wt) and PARP-1 gene deficient (parp+/- and parp-/-) Sv129/CD-1 hybrid mice were subjected to unilateral hypoxia-ischemia and histologic damage was assessed 10 days later by two evaluators. ⋯ Brain levels of NAD+ were also significantly reduced, but the decrease of NAD+ during the early post-hypoxia-ischemia (HI) phase was only seen in males. The results indicate that hypoxia-ischemia activates Poly(ADP-ribose) polymerase-1 in the neonatal brain and that the sex of the animal strongly influences its role in the pathogenesis of brain injury.
-
Journal of neurochemistry · Sep 2004
Comparative StudyAn anti-CD11d integrin antibody reduces cyclooxygenase-2 expression and protein and DNA oxidation after spinal cord injury in rats.
Our studies have shown that treatment with a monoclonal antibody (mAb) against the CD11d subunit of the leukocyte integrin CD11d/CD18 after spinal cord injury (SCI) decreases intraspinal inflammation, myeloperoxidase activity, lipid peroxidation and protein nitration, improving neurological function in rats. Using severe clip compression SCI in the rat, immunohistochemistry and western blotting were employed to assess the effects of an anti-CD11d mAb treatment on spinal cord cyclooxygenase-2 (COX-2) expression, formation of 8-hydroxy-2-deoxyguanosine (8-OHdG, a marker of RNA and DNA oxidation) and protein carbonylation (a marker of protein oxidation). We also assessed treatment effects on the expression of apurinic/apyrimidinic endonuclease (redox effector factor-1, APE/Ref-1), a multifunctional enzyme involved in the base excision repair of apurinic/apyrimidinic sites in DNA. ⋯ Anti-CD11d mAb treatment clearly attenuated COX-2 expression and 8-OHdG and protein carbonyl formation and rescued APE/Ref-1 expression after SCI. This study suggests that anti-CD11d mAb treatment significantly reduces intraspinal free radical formation after SCI, thereby reducing protein and DNA oxidative damage. These effects likely underlie tissue preservation and improved neurological function resulting from the mAb treatment.