Journal of neurochemistry
-
Journal of neurochemistry · Sep 2007
Multiple effects of 2ME2 and D609 on the cortical expression of HIF-1alpha and apoptotic genes in a middle cerebral artery occlusion-induced focal ischemia rat model.
Despite 2-methoxyestradiol (2ME2) and tricyclodecan-9-yl-xanthogenate (D609) having multiple effects on cancer cells, mechanistically, both of them down-regulate hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF). We hypothesize HIF-1alpha plays an essential role in cerebral ischemia as a pro-apoptosis regulator; 2ME2 and D609 decrease the levels of HIF-1alpha and VEGF, that might contribute to protecting brain from ischemia injury. A total of 102 male Sprague-Dawley rats were split into five groups: sham, middle cerebral artery occlusion (MCAO), MCAO + dimethyl sulfoxide, MCAO + 2ME2, and MCAO + D609. 2ME2 and D609 were injected intraperitoneally 1 h after reperfusion. ⋯ Double fluorescence labeling shows HIF-1alpha positive immunoreactive materials are co-localized with BNIP3 and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling inside the nuclei of neurons. At 7 days, 2ME2 and D609 reduce the infarct volume (2,3,7-triphenyltetrazolium chloride) and blood-brain barrier extravasation, decrease the mortality and improve the neurological deficits. In conclusion, 2ME2 and D609 are powerful agents to protect brain from cerebral ischemic injury by inhibiting HIF-1alpha expression, attenuating the superfluous expression of VEGF to avoid blood-brain barrier disruption and suppressing neuronal apoptosis via BNIP3 pathway.
-
Journal of neurochemistry · Sep 2007
Comparative StudyA comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation.
Activated microglia are an important feature of many neurological diseases and can be imaged in vivo using 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a ligand that binds the peripheral benzodiazepine receptor (PBR). N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl) acetamide (DAA1106) is a new PBR-specific ligand that has been reported to bind to PBR with higher affinity compared with PK11195. ⋯ Finally, ex vivo autoradiography and positron emission tomography imaging in vivo showed greater retention of [(11)C]DAA1106 compared with [(11)C](R)-PK11195 in animals injected with either lipopolysaccaride or 6-hydroxydopamine at the site of lesion. These results indicate that DAA1106 binds with higher affinity to microglia in rat models of neuroinflammation when compared with PK11195, suggesting that [(11)C]DAA1106 may represent a significant improvement over [(11)C](R)-PK11195 for in vivo imaging of activated microglia in human neuroinflammatory disorders.
-
Journal of neurochemistry · Sep 2007
Activation of extracellular signal-regulated protein kinases 5 in primary afferent neurons contributes to heat and cold hyperalgesia after inflammation.
Heat and cold hyperalgesia is a common feature of inflammatory pain. To investigate whether activation of extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1, in primary sensory neurons participates in inflammatory pain, we examined the phosphorylation of ERK5 in the dorsal root ganglion (DRG) after peripheral inflammation. Inflammation induced by complete Freund's adjuvant produced heat and cold hyperalgesia on the ipsilateral hind paw and induced an increase in the phosphorylation of ERK5, mainly in tyrosine kinase A-expressing small- and medium-size neurons. ⋯ Furthermore, the inhibition of ERK5 blocked the induction of transient receptor potential channel TRPV1 and TRPA1 expression in DRG neurons after peripheral inflammation. Our results show that ERK5 activated in DRG neurons contribute to the development of inflammatory pain. Thus, blocking ERK5 signaling in sensory neurons that has the potential for preventing pain after inflammation.
-
Journal of neurochemistry · Sep 2007
Reduced pain behaviors and extracellular signal-related protein kinase activation in primary sensory neurons by peripheral tissue injury in mice lacking platelet-activating factor receptor.
Peripheral tissue injury causes the release of various mediators from damaged and inflammatory cells, which in turn activates and sensitizes primary sensory neurons and thereby produces persistent pain. The present study investigated the role of platelet-activating factor (PAF), a phospholipid mediator, in pain signaling using mice lacking PAF receptor (pafr-/- mice). Here we show that pafr-/- mice displayed almost normal responses to thermal and mechanical stimuli but exhibit attenuated persistent pain behaviors resulting from tissue injury by locally injecting formalin at the periphery as well as capsaicin pain and visceral inflammatory pain without any alteration in cytoarchitectural or neurochemical properties in dorsal root ganglion (DRG) neurons and a defect in motor function. ⋯ Interestingly, mice lacking PAFR showed reduced phosphorylation of extracellular signal-related protein kinase (ERK), an important kinase for the sensitization of primary sensory neurons, in their DRG neurons after formalin injection. Furthermore, U0126, a specific inhibitor of the ERK pathway suppressed the persistent pain by formalin. Thus, PAFR may play an important role in both persistent pain and the sensitization of primary sensory neurons after tissue injury.
-
Journal of neurochemistry · Sep 2007
Roles of extracellular signal-regulated protein kinases 5 in spinal microglia and primary sensory neurons for neuropathic pain.
Neuropathic pain that occurs after peripheral nerve injury is poorly controlled by current therapies. Increasing evidence shows that mitogen-activated protein kinase (MAPK) play an important role in the induction and maintenance of neuropathic pain. Here we show that activation of extracellular signal-regulated protein kinases 5 (ERK5), also known as big MAPK1, participates in pain hypersensitivity caused by nerve injury. ⋯ Furthermore, inhibition of ERK5 blocked the induction of transient receptor potential channels and brain-derived neurotrophic factor expression in DRG neurons. Our results show that ERK5 activated in spinal microglia and DRG neurons contributes to the development of neuropathic pain. Thus, blocking ERK5 signaling in the spinal cord and primary afferents has potential for preventing pain after nerve damage.