Journal of neurochemistry
-
Journal of neurochemistry · Dec 2015
Prothymosin-alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina.
Prothymosin-alpha protects the brain and retina from ischemic damage. Although prothymosin-alpha contributes to toll-like receptor (TLR4)-mediated immnunopotentiation against viral infection, the beneficial effects of prothymosin-alpha-TLR4 signaling in protecting against ischemia remain to be elucidated. In this study, intravitreal administration of prothymosin-alpha 48 h before induction of retinal ischemia prevented retinal cellular damage as evaluated by histology, and retinal functional deficits as evaluated by electroretinography. ⋯ Taken together, the results of this study suggest that prothymosin-alpha preconditioning selectively drives TLR4-TIR-domain-containing adapter-inducing interferon-β signaling and microglia in the prevention of retinal ischemic damage. We propose the following mechanism for prothymosin-alpha (ProTα) preconditioning-induced retinal prevention against ischemia: ProTα preconditioning-induced prevention of retinal ischemic damage is mediated by selective activation of the TIR-domain-containing adapter-inducing interferon-β (TRIF)- interferon regulatory factor 3 (IRF3) pathway downstream of toll-like receptor 4 (TLR4) in microglia, resulting in up-regulation of TRIF-IRF3-dependent protective genes and down-regulation of myeloid differentiation primary response gene 88 (MyD88)-Nuclear factor (NF)κB-dependent injury genes. Detailed investigations would be helpful to test the efficacy of ProTα as a therapeutic agent for the prevention of ischemic disorders.
-
Journal of neurochemistry · Dec 2015
Acrolein contributes to TRPA1 up-regulation in peripheral and central sensory hypersensitivity following spinal cord injury.
Acrolein, an endogenous aldehyde, has been shown to be involved in sensory hypersensitivity after rat spinal cord injury (SCI), for which the pathogenesis is unclear. Acrolein can directly activate a pro-algesic transient receptor protein ankyrin 1 (TRPA1) channel that exists in sensory neurons. Both acrolein and TRPA1 mRNA are elevated post SCI, which contributes to the activation of TRPA1 by acrolein and consequently, neuropathic pain. ⋯ Finally, our data also further support the notion that acrolein scavenging may be an effective therapeutic approach to alleviate neuropathic pain after SCI. We propose that the trauma-mediated elevation of acrolein causes neuropathic pain through at least two mechanisms: acrolein stimulates the production of transient receptor protein ankyrin 1 (TRPA1) in both central and peripheral locations, and it activates TRPA1 channels directly. Therefore, acrolein appears to be a critical factor in the pathogenesis of post-SCI sensory hypersensitivity, becoming a novel therapeutic target to relieve both acute and chronic post-SCI neuropathic pain.
-
Journal of neurochemistry · Dec 2015
Liraglutide is neurotrophic and neuroprotective in neuronal cultures and mitigates mild traumatic brain injury in mice.
Traumatic brain injury (TBI), a brain dysfunction for which there is no present effective treatment, is often caused by a concussive impact to the head and affects an estimated 1.7 million Americans annually. Our laboratory previously demonstrated that exendin-4, a long-lasting glucagon-like peptide 1 receptor (GLP-1R) agonist, has neuroprotective effects in cellular and animal models of TBI. Here, we demonstrate neurotrophic and neuroprotective effects of a different GLP-1R agonist, liraglutide, in neuronal cultures and a mouse model of mild TBI (mTBI). ⋯ Liraglutide produced neurotrophic and neuroprotective effects similar to those of exendin-4 in vitro, likely involving the cAMP/PKA/pCREB pathway. Our findings in cell culture were well-translated in a weight-drop mTBI mouse model. Post-treatment with a clinically relevant dose of liraglutide for 7 days in mice ameliorated memory impairments caused by mTBI.
-
Journal of neurochemistry · Dec 2015
Deficits in behavioral sensitization and dopaminergic responses to methamphetamine in adenylyl cyclase 1/8-deficient mice.
The cAMP/protein kinase A pathway regulates methamphetamine (METH)-induced neuroplasticity underlying behavioral sensitization. We hypothesize that adenylyl cyclases (AC) 1/8 mediate these neuroplastic events and associated striatal dopamine regulation. Locomotor responses to METH (1 and 5 mg/kg) and striatal dopamine function were evaluated in mice lacking AC 1/8 (DKO) and wild-type (WT) mice. ⋯ AC 1/8 double knockout (DKO) mice showed heightened basal locomotor activity and dorsal striatal dopamine responsivity. Conversely, methamphetamine-induced locomotor activity was attenuated in DKO mice, accompanied by reductions in dopamine and HVA content and impaired DARPP-32 activation. These findings indicate AC 1/8 signaling regulates the sensitivity of the nigrostriatal pathway subserving stimulant and neuroadaptive sensitizing effects of methamphetamine. 3-MT, 3-methoxytyramine; Ca(2+), calcium; CaM, calmodulin; cdk5; cyclin-dependent kinase 5; DA, dopamine; DARPP-32, dopamine- and cAMP-regulated phosphoprotein; D1R, dopamine D1 receptor; HVA, homovanillic acid; PKA, protein kinase A.