Journal of neurochemistry
-
Journal of neurochemistry · Mar 2012
Activation of transient receptor potential ankyrin 1 evokes nociception through substance P release from primary sensory neurons.
To examine mechanisms underlying substance P (SP) release from primary sensory neurons in response to activation of the non-selective cation channel transient receptor potential ankyrin 1 (TRPA1), SP release from cultured rat dorsal root ganglion neurons was measured, using radioimmunoassay, by stimulating TRPA1 with allyl isothiocyanate (AITC), a TRPA1 agonist. AITC-evoked SP release occurred in a concentration- and time-dependent manner. Interestingly, p38 mitogen-activated protein kinase (p38) inhibitor SB203580 significantly attenuated AITC-evoked SP release. ⋯ Immunohistochemical studies demonstrated that intraplantar AITC injection induced the phosphorylation of p38 in mouse dorsal root ganglion neurons containing SP. These findings suggest that activation of TRPA1 evokes SP release from the primary sensory neurons through phosphorylation of p38, subsequent nociceptive behaviors and inflammatory responses. Furthermore, the data also indicate that blocking the effects of TRPA1 activation at the periphery leads to significant antinociception.
-
Journal of neurochemistry · Feb 2012
Comparative StudyReduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice.
Parkinson's disease (PD) patients frequently reveal deficit in cognitive functions during the early stage in PD. The dopaminergic neurotoxin, MPTP-induced neurodegeneration causes an injury of the basal ganglia and is associated with PD-like behaviors. In this study, we demonstrated that deficits in cognitive functions in MPTP-treated mice were associated with reduced calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and impaired long-term potentiation (LTP) induction in the hippocampal CA1 region. ⋯ Concomitant with impaired LTP induction, CaMKII autophosphorylation was significantly decreased 3weeks after MPTP treatment in the hippocampal CA1 region. Finally, the reduced CaMKII autophosphorylation was closely associated with reduced AMPA-type glutamate receptor subunit 1 (GluR1; Ser-831) phosphorylation in the hippocampal CA1 region of MPTP-treated mice. Taken together, decreased CaMKII activity with concomitant impaired LTP induction in the hippocampus likely account for the learning disability observed in MPTP-treated mice.
-
Journal of neurochemistry · Feb 2012
Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade.
Activation of microglia, the resident macrophages of the brain, around the amyloid plaques is a key hallmark of Alzheimer's disease (AD). Recent evidence in mouse models indicates that microglia are required for the neurodegenerative process of AD. Amyloid-β (Aβ) peptides, the core components of the amyloid plaques, can trigger microglial activation by interacting with several Toll-like receptors (TLRs), including TLR4. ⋯ Importantly, orally administered resveratrol in a mouse model of cerebral amyloid deposition lowered microglial activation associated with cortical amyloid plaque formation. Together this work provides strong evidence that resveratrol has in vitro and in vivo anti-inflammatory effects against Aβ-triggered microglial activation. Further studies in cell culture systems showed that resveratrol acted via a mechanism involving the TLR4/NF-κB/STAT signaling cascade.
-
Journal of neurochemistry · Feb 2012
Hypoxia inducible factor-1α is involved in the neurodegeneration induced by isoflurane in the brain of neonatal rats.
More and more data show isoflurane, a commonly used volatile anesthetic has dual effects on neuron fate. However, the underlying mechanisms that can explain the apparent paradox are poorly understood. Hypoxia inducible factor (HIF)-1α, a transcription factor, has been found regulating both prosurvival and prodeath pathways in the CNS. ⋯ Furthermore, knockdown of HIF-1α expression in cultured neurons attenuated isoflurane-induced neurotoxicity. Finally, Morris water maze (MWM) test showed neonatal exposure to isoflurane impaired juvenile learning and memory ability in rats. These findings indicate that HIF-1α is involved in the neurodegeneration induced by isoflurane in the brain of neonatal rats, suggesting HIF-1α may be a candidate for the dual effects of isoflurane on neuron fate.
-
Journal of neurochemistry · Jan 2012
Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury.
The roles of caveolin-1 (cav-1) in regulating blood-brain barrier (BBB) permeability are unclear yet. We previously reported that cav-1 was down-regulated and the production of nitric oxide (NO) induced the loss of cav-1 in focal cerebral ischemia and reperfusion injury. The present study aims to address whether the loss of cav-1 impacts on BBB permeability and matrix metalloproteinases (MMPs) activity during cerebral ischemia-reperfusion injury. ⋯ Interestingly, the effects of L-NAME on MMPs activity and BBB permeability was partly reversed in cav-1 deficiency mice. These results, when taken together, suggest that cav-1 plays important roles in regulating MMPs activity and BBB permeability in focal cerebral ischemia and reperfusion injury. The effects of L-NAME on MMPs activity and BBB permeability are partly mediated by preservation of cav-1.