Journal of neurochemistry
-
Journal of neurochemistry · Aug 2017
ReviewCholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning.
Organophosphorus agents (OPs) irreversibly inhibit acetylcholinesterase (AChE) causing a major cholinergic syndrome. The medical counter-measures of OP poisoning have not evolved for the last 30 years with carbamates for pretreatment, pyridinium oximes-based AChE reactivators, antimuscarinic drugs and neuroprotective benzodiazepines for post-exposure treatment. These drugs ensure protection of peripheral nervous system and mitigate acute effects of OP lethal doses. ⋯ New therapeutic approaches for pre- and post-exposure treatments involve detoxification of OP molecules before they reach their molecular targets by administrating catalytic bioscavengers, among them phosphotriesterases are the most promising. Novel generation of broad spectrum reactivators are designed for crossing the blood-brain barrier and reactivate central AChE. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
-
Scientific journals that are owned by a learned society, like the Journal of Neurochemistry (JNC), which is owned by the International Society for Neurochemistry (ISN), benefit the scientific community in that a large proportion of the income is returned to support the scientific mission of the Society. The income generated by the JNC enables the ISN to organize conferences as a platform for members and non-members alike to share their research, supporting researchers particularly in developing countries by travel grants and other funds, and promoting education in student schools. These direct benefits and initiatives for ISN members and non-members distinguish a society journal from pure commerce. ⋯ JNC itself has an open access option, at a significantly reduced cost for Society members as an additional benefit. This article provides first-hand insights from a long-standing Editor-in-Chief, Kunihiko Suzuki, about the history of JNC's ownership and about difficulties and battles fought on the way to its current success and reputation today. This article is part of the 60th Anniversary special issue.
-
Journal of neurochemistry · Oct 2016
ReviewConverging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease.
Dopamine-releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age-dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement-related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium- and activity-dependent manner. ⋯ We propose that SN DA neurons possess several feedback and feed-forward mechanisms to protect and adapt their activity-pattern and calcium-homeostasis within a physiological bandwidth, and that PD-trigger factors can narrow this bandwidth. We summarize roles of ion channels in this view, and findings documenting that both, reduced as well as elevated activity and associated calcium-levels can trigger SN DA degeneration. This article is part of a special issue on Parkinson disease.
-
The effects of aging were traditionally thought to be immutable, particularly evident in the loss of plasticity and cognitive abilities occurring in the aged central nervous system (CNS). However, it is becoming increasingly apparent that extrinsic systemic manipulations such as exercise, caloric restriction, and changing blood composition by heterochronic parabiosis or young plasma administration can partially counteract this age-related loss of plasticity in the aged brain. In this review, we discuss the process of aging and rejuvenation as systemic events. ⋯ Thus, systemic manipulations promoting a younger blood composition provide effective strategies to rejuvenate the aged brain. As a consequence, we can now consider reactivating latent plasticity dormant in the aged CNS as a means to rejuvenate regenerative, synaptic, and cognitive functions late in life, with potential implications even for extending lifespan. We review evidence of brain rejuvenation focusing on several systemic manipulations - exercise, caloric restriction, heterochronic parabiosis, and young plasma administration - and their ability to restore regenerative capacity, synaptic plasticity, and cognitive function in the brain.
-
Journal of neurochemistry · Jun 2014
ReviewAnimal models of sports-related head injury: bridging the gap between pre-clinical research and clinical reality.
Sports-related head impact and injury has become a very highly contentious public health and medico-legal issue. Near-daily news accounts describe the travails of concussed athletes as they struggle with depression, sleep disorders, mood swings, and cognitive problems. Some of these individuals have developed chronic traumatic encephalopathy, a progressive and debilitating neurodegenerative disorder. ⋯ Animal models have always been an integral part of the study of human TBI but few existing methods are valid for studying SRHI. In this review, we propose criteria for effective animal models of SRHI. Movement of the head upon impact is judged to be of primary importance in leading to concussion and persistent CNS dysfunction.