Journal of neurochemistry
-
Journal of neurochemistry · Nov 2010
Microglial activation mediates de novo lysophosphatidic acid production in a model of neuropathic pain.
We recently demonstrated that de novo lysophosphatidic acid (LPA) production in the spinal cord occurs in the early phase after nerve injury or LPA injection, and underlies the peripheral mechanisms of neuropathic pain. In this study, we examined the possible involvement of spinal cord microglia in such LPA-mediated functions. Intrathecal LPA injection rapidly increased the gene expression of CD11b and protein expression of phosphor-p38, accompanied by a morphological change of microglia from a ramified to amoeboid shape. ⋯ Early treatment with minocycline also blocked LPA-evoked de novo LPA production and the increased activation of cytosolic phospholipase A(2), an LPA synthesis-related enzyme. Similar results were observed when the sciatic nerve was partially injured: early, but not late, treatment with minocycline significantly inhibited the injury-induced neuropathic pain, microglial activation, de novo LPA production and the underlying increased activation of cytosolic phospholipase A(2) as well as calcium-independent phospholipase A(2), another LPA synthesis-related enzyme. These findings suggest that the early phase of microglial activation is involved in de novo LPA production, and that this underlies the initial mechanisms of nerve injury-induced neuropathic pain.
-
Journal of neurochemistry · Nov 2010
Review Meta AnalysisAdministration of thiazolidinediones for neuroprotection in ischemic stroke: a pre-clinical systematic review.
Thiazolidinediones (TZDs) may prevent or attenuate CNS injury arising from an ischemic event. We performed meta-analysis of experimental studies in which a TZD (either rosiglitazone or pioglitazone) was administered in a rodent model of focal or global cerebral ischemia. Infarct volume was the primary endpoint for analysis of drug efficacy, and neurological outcome was also assessed. ⋯ Rosiglitazone and pioglitazone were similarly effective in reducing infarct volume and protecting neurologic function. Importantly, the collective data suggest that pre-treatment with a TZD is not required for neuroprotection, although additional studies are clearly needed to define the breadth of the therapeutic window. The data warrant further studies into the potential acute use of TZDs for ischemic stroke therapy in the general population.
-
Journal of neurochemistry · Nov 2010
Comparative StudyAn apolipoprotein E4 fragment can promote intracellular accumulation of amyloid peptide beta 42.
Apolipoprotein E (apoE) plays a crucial role in lipid transport in circulation and the brain. The apoE4 isoform is a major risk factor for Alzheimer's disease (AD). ApoE4 is more susceptible to proteolysis than other apoE isoforms and apoE4 fragments have been found in brains of AD patients. ⋯ ApoE4[Δ(166-299)] effected a 20% reduction of cellular sphingomyelin levels, as well as changes in cellular membrane micro-fluidity. Following uptake, approximately 50% of 42-amino-acid Aβ variant remained within the cell for at least 24 h, and led to increased formation of reactive oxygen species. Overall, our findings suggest a direct link between two early events in the pathogenesis of AD, apoE4 proteolysis and intraneuronal presence of amyloid beta peptide.
-
Journal of neurochemistry · Nov 2010
Comparative StudyTherapeutic evaluation of etanercept in a model of traumatic brain injury.
Antagonism of tumor necrosis factor-alpha with etanercept has proved to be effective in the treatment of spinal cord injury and centrally endotoxin-induced brain injury. However, etanercept may offer promise as therapy for traumatic brain injury (TBI). ⋯ TBI-induced neuronal apoptosis (e.g., increased numbers of terminal deoxynucleotidyl transferase αUTP nick-end labeling and neuronal-specific nuclear protein double-positive cells), glial apoptosis (e.g., increased numbers of terminal deoxynucleotidyl transferase αUTP nick-end labeling and glial fibrillary acidic protein double-positive cells), astrocytic (e.g., increased numbers of glial fibrillary acidic protein positive cells) and microglial (e.g., increased numbers of ionized calcium-binding adapter molecule 1-positive cells) activation and activated inflammation (e.g., increased levels of tumor necrosis factor-alpha, interleukin-1β and interleukin-6) were all significantly reduced by etanercept treatment. These findings suggest that etanercept may improve outcomes of TBI by penetrating into the cerebrospinal fluid in rats.
-
Journal of neurochemistry · Oct 2010
Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer's brain.
The brain steady state level of β-amyloid (Aβ) is determined by the balance between its production and removal, the latter through egress across blood and CSF barriers as well as Aβ degradation. The major Aβ-degrading enzymes are neprilysin (NEP), insulin-degrading enzyme (IDE), and endothelin-converting enzyme (ECE-1). Although evidence suggests that NEP is down-regulated in Alzheimer's disease (AD), the role of IDE and ECE in the Aβ accumulation in aging and dementia remains less certain. ⋯ Correlation analyses suggested that NEP expression was correlated with Aβ accumulation and clinical diagnosis, being lower in AD than in no cognitive impairment. In contrast, neither IDE nor ECE-1 correlated with Aβ or clinical diagnosis. These findings provide additional support for NEP as the major protease involved in Aβ degradation and suggest its possible therapeutic targeting in AD.