Journal of neurochemistry
-
Journal of neurochemistry · Aug 2005
Comparative StudyInhibition of p38 mitogen-activated protein kinase attenuates interleukin-1beta-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord.
We have reported recently that intrathecal (i.t.) injection of interleukin-1beta (IL-1beta), at a dose of 100 ng, induces inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in the spinal cord and results in thermal hyperalgesia in rats. This study further examines the role of mitogen-activated protein kinase (MAPK) in i.t. IL-1beta-mediated iNOS-NO cascade in spinal nociceptive signal transduction. ⋯ In contrast, both ERK and JNK inhibitor pretreatments only partially (approximately 50%) inhibited the IL-1beta-induced iNOS expression in the spinal cord. Our results suggest that p38 MAPK plays a pivotal role in i.t. IL-1beta-induced spinal sensitization and nociceptive signal transduction.
-
Journal of neurochemistry · Aug 2005
Comparative StudyThe excitoprotective effect of N-methyl-D-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons.
The neuroprotective effect and molecular mechanisms underlying preconditioning with N-methyl-D-aspartate (NMDA) in cultured hippocampal neurons have not been described. Pre-incubation with subtoxic concentrations of the endogenous neurotransmitter glutamate protects vulnerable neurons against NMDA receptor-mediated excitotoxicity. As a result of physiological preconditioning, NMDA significantly antagonizes the neurotoxicity resulting from subsequent exposure to an excitotoxic concentration of glutamate. ⋯ The accumulated increase of BDNF in the medium is followed by an increase in the phosphorylation (activation) of TrkB receptors and a later increase in exon 4-specific BDNF mRNA. The neuroprotective effect of NMDA was attenuated by pre-incubation with a BDNF-blocking antibody and TrkB-IgG, a fusion protein known to inhibit the activity of extracellular BDNF, suggesting that BDNF plays a major role in NMDA-mediated survival. These results demonstrate that low level stimulation of NMDA receptors protect neurons against glutamate excitotoxicity via a BDNF autocrine loop in hippocampal neurons and suggest that activation of neurotrophin signaling pathways plays a key role in the neuroprotection of NMDA.
-
Journal of neurochemistry · Aug 2005
Evidence that gabapentin reduces neuropathic pain by inhibiting the spinal release of glutamate.
Gabapentin is an anticonvulsant that successfully treats many neuropathic pain syndromes, although the mechanism of its antihyperalgesic action remains elusive. This study aims to help delineate gabapentin's antihyperalgesic mechanisms. We assessed the effectiveness of gabapentin at decreasing mechanical and cold hypersensitivity induced in a rat model of neuropathic pain. ⋯ We present the first evidence that gabapentin reduces the formalin-induced release of both glutamate and aspartate in SCDH. Furthermore, i.t. gabapentin reduces the enhanced noxious stimulus-induced spinal release of glutamate seen in neuropathic rats. These data suggest that gabapentin reduces neuropathic pain symptoms by inhibiting the release of glutamate in the SCDH.
-
Journal of neurochemistry · Jun 2005
Chronic fluoxetine administration inhibits extracellular signal-regulated kinase 1/2 phosphorylation in rat brain.
Accumulating evidence indicates that antidepressants alter intracellular signalling mechanisms resulting in long-term synaptic alterations which probably account for the delay in clinical action of these drugs. Therefore, we investigated the effects of chronic fluoxetine administration on extracellular signal-regulated kinase (ERK) 1 and 2, a group of MAPKs that mediate signal transduction from the cell surface downstream to the nucleus. Our data demonstrate that 3-week fluoxetine treatment resulted in long-lasting reduction of phospho-ERK 1 and 2. ⋯ Conversely, imipramine did not reduce the hippocampal phosphorylation of both ERK subtypes whereas it selectively increased ERK 1 phosphorylation in the cytosolic compartment of frontal cortex suggesting a drug-specific effect on this intracellular target. These results point to modulation of phosphorylation, rather than altered expression, as the main target in the action of fluoxetine on this pathway. The reduction of ERK 1/2 function herein reported may be associated with the therapeutic effects of fluoxetine in the treatment of depression.
-
Journal of neurochemistry · Apr 2005
Comparative StudyFunctional SDF1 alpha/CXCR4 signaling in the developing spinal cord.
Stromal cell-derived factor (SDF1) and its cognate receptor CXCR4 have been shown to play a central role in the development of the cerebellum, hippocampus, and neocortex. However, little is known about the functions of SDF1/CXCR4 in early spinal cord progenitor cell differentiation. Here, we show that a functional SDF1alpha/CXCR4 signaling pathway is present in developing spinal cord cells (a spliced variant of SDF1). ⋯ Furthermore, SDF1alpha induced chemotaxis in both neural and glial progenitors in in vitro migration assays. Pre-treatment of the cells with either pertussis toxin or PD98059 completely inhibited SDF1alpha-induced chemotaxis. Thus, our data suggest that SDF1alpha may function through a CXCR4/ERK/Ets-linked signalling pathway in spinal cord neural development to modulate migration of progenitor cells.