Journal of neuropathology and experimental neurology
-
J. Neuropathol. Exp. Neurol. · Mar 2005
ReviewRecent advances in hereditary spinocerebellar ataxias.
In recent years, molecular genetic research has unraveled a major part of the genetic background of autosomal dominant and recessive spinocerebellar ataxias. These advances have also allowed insight in (some of) the pathophysiologic pathways assumed to be involved in these diseases. For the clinician, the expanding number of genes and genetic loci in these diseases and the enormous clinical heterogeneity of specific ataxia subtypes complicate management of ataxia patients. In this review, the clinical and neuropathologic features of the recently identified spinocerebellar ataxias are described, and the various molecular mechanisms that have been demonstrated to be involved in these disorders are discussed.
-
J. Neuropathol. Exp. Neurol. · Mar 2005
Comparative StudyCorticospinal regeneration into lumbar grey matter correlates with locomotor recovery after complete spinal cord transection and repair with peripheral nerve grafts, fibroblast growth factor 1, fibrin glue, and spinal fusion.
Knowledge of which tracts are essential for the recovery of locomotor function in rats after repair is unknown. To assess the mechanism of recovery, we examined the correlation between functional recovery and axonal regeneration. All rats underwent complete cord transection and repair with peripheral nerves, fibroblast growth factor 1, fibrin glue, and spinal fixation. ⋯ To determine which long tracts correlated with recovery, a novel technique of simultaneous bidirectional axonal tracing and immunohistochemical examination of axonal type was used to quantitate the regeneration of corticospinal, rubrospinal, reticulospinal, vestibulospinal, raphespinal, propriospinal, serotonergic, and calcitonin gene-related peptide containing axons. Multiple linear regression analysis revealed recovery of function correlated only with regeneration of corticospinal axons into the gray matter of the lumbar spinal cord (R = 0.977, p < 0.02). For the first time, we show that regeneration of the corticospinal tract into the lumbar gray matter is a mechanism of functional locomotor recovery after complete cord transection and repair.