Journal of neuropathology and experimental neurology
-
J. Neuropathol. Exp. Neurol. · Sep 2005
Comparative StudyInhibition of type 1 diabetic hyperalgesia in streptozotocin-induced Wistar versus spontaneous gene-prone BB/Worchester rats: efficacy of a selective bradykinin B1 receptor antagonist.
Insulin-dependent type 1 diabetes (T1D) is linked to a series of complications, including painful diabetic neuropathy (PDN). Several neurovascular systems are activated in T1D, including the inducible bradykinin (BK) B1 receptor (BKB1-R) subtype. We assessed and compared the efficacy profile of a selective BKB1-R antagonist on hyperalgesia in 2 models of T1D: streptozotocin (STZ) chemically induced diabetic Wistar rats and spontaneous BioBreeding/Worchester diabetic-prone (BB/Wor-DP) rats. ⋯ BB/Wor-DP rats also developed hyperalgesia over time that preceded hyperglycemia, starting at the age of 6 weeks (9% decrease in the hot plate reaction time) and stabilizing over the age of 16 to 24 weeks to a maximum (60% decrease in the hot plate reaction time). Single, acute subcutaneous administration of the selective BKB1-R antagonist induced significant time- and dose-dependent attenuation of hyperalgesia in both STZ diabetic and BB/Wor-DP rats. Thus, selective antagonism of the inducible BKB1-R subtype may constitute a novel and potential therapeutic approach for the treatment of PDN.