Medicine
-
Currently, a reliable early prognostic marker has not been identified for lung adenocarcinoma (LUAD), the most common malignancy. Recent studies demonstrated that lysosomal rupture is involved in cancer migration, progression, and immune microenvironment formation. We performed a bioinformatics analysis of lysosomal rupture to investigate whether lysosome-related genes (LRGs) are key in LUAD. ⋯ Immunotherapy effectiveness between the high- and low-risk groups was evaluated based on the tumor mutational burden and analyses of immune cell infiltration and drug sensitivity. Pathway enrichment analysis revealed that lysosomes were closely associated with glucose metabolism, amino acid metabolism, and the immune response in patients with LUAD. Lysosomes are a likely new therapeutic target and provide new directions and ideas for treating and managing patients with LUAD.
-
According to current research, the primary active ingredients of Radix Astragali (RA), such as saponins, flavonoids, and polysaccharides, play an important role in anti-inflammatory effects. However, the exact molecular mechanism underlying the action was not elucidated to date. Our research attempted to determine the active components in RA and to investigate the interaction between the active components and targets involved in the anti-inflammation activity by network pharmacology and molecular docking. ⋯ Moreover, molecular docking showed that the 2 most active compounds, Astragaloside IV and kaempferol, could efficiently bind with the targets TNF, TLR4, and IL10. Astragaloside IV may play a part in anti-inflammatory effects through pathways such as HIF-1 signaling pathway, Inflammatory bowel disease and Hepatitis B ect. RA exhibits the characteristic of multicomponent and multitarget synergistic effects in exerting anti-inflammatory effects and the effective component of RA is Astragaloside IV, targeting TNF, TLR4, and IL10.
-
Studies have shown that aging significantly impacts tumorigenesis, survival outcome, and treatment efficacy in various tumors, covering high-grade serous ovarian cancer (HGSOC). Therefore, the objective for this investigation is to construct an aging-relevant risk signature for the first time, which will help evaluate the immunogenicity and survival status for patients with HGSOC. Totaling 1727 patients with HGSOC, along with their mRNA genomic data and clinical survival data, were obtained based on 5 independent cohorts. ⋯ Notably, in the immunotherapeutic cohorts, low-risk aging signature was observed to link to better immunotherapeutic outcomes and increased response rates. Together, our constructed signature of aging has the potential to assess not only the prognosis outcome and immunogenicity, but also, importantly, the efficacy of ICI treatment. This signature provides valuable insights for prognosis prediction and immunotherapeutic effect evaluation, ultimately promoting individualized treatment for HGSOC patients.
-
Currently, there is no comprehensive bibliometric study in the literature on Crohn's disease (CD). The aim of this study was to analyze articles published on CD using bibliometric and statistical methods. The aim was to identify current research trends, show global productivity, and determine important players such as countries, journals, institutions, and authors. ⋯ We have seen an exponential increase in worldwide publications on CD. In recent years, the major research topics related to CD have been ustekinumab, vedolizumab, fecal calprotectin, therapeutic drug monitoring, biologics, biomarkers, exclusive enteral nutrition, microbiome/microbiota, magnetic resonance enterography, anti-TNF, postoperative complications, and mucosal healing. We determined that countries with large economies, particularly the United States, United Kingdom, Germany, France, Canada, Italy, Japan and China, have taken the lead in research contributions to the development of CD literature.
-
Alveolar macrophage phagocytosis is significantly reduced in Chronic obstructive pulmonary disease, and cigarette smoke extract is one of the chief reasons for this decrease. Nevertheless, the specific underlying mechanism remains elusive. In this study, the role and possible mechanism of miR-155-5p/mTORC2/RhoA in the phagocytosis of mouse alveolar macrophages (MH-S) were explored. ⋯ On the one hand, transfecting miR-155-5p mimic, mimic NC, miR-155-5p inhibitor, or inhibitor NC in MH-S cells overexpressing miR-155-5p increased the Alveolar macrophage phagocytotic rate, up-regulated the expression level of RhoA and p-RhoA, and down-regulated that of mTOR and Rictor mRNA and protein. On the other hand, inhibiting the expression of miR-155-5p lowered the phagocytotic rate, up-regulated the expression of mTOR, Rictor mRNA, and protein, and down-regulated the expression of RhoA and p-RhoA, which taken together, authenticated that miR-155-5p participates in macrophage phagocytosis via the mTORC2/RhoA pathway. Finally, confocal microscopy demonstrated that cells overexpressing miR-155-5p underwent cytoskeletal rearrangement during phagocytosis, and the phagocytic function of cells was enhanced, signaling that miR-155-5p participated in macrophage skeletal rearrangement and enhanced alveolar macrophage phagocytosis by targeting the expression of Rictor in the mTORC2/RhoA pathway.