British journal of pharmacology
-
1. The mitogen-activated protein kinases (MAPKs) consist of the p42/p44 MAPKs and the stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 MAPK. In this study we have examined the effect of histamine H(1) receptor activation on MAPK pathway activation in the smooth muscle cell line DDT(1)MF-2. 2. ⋯ Histamine-induced p38 MAPK activation was inhibited by pertussis toxin (74% inhibition) and the p38 MAPK inhibitor SB 203580 (95% inhibition). 5. In summary, we have shown the histamine H(1) receptor activates p42/p44 MAPK and p38 MAPK signalling pathways in DDT(1)MF-2 smooth muscle cells. Interestingly, signalling to both pathways appears to involve histamine H(1) receptor coupling to G(i)/G(o)-proteins.
-
These studies investigated the pharmacology of neurogenic dural vasodilation in anaesthetized guinea-pigs. Following introduction of a closed cranial window the meningeal (dural) blood vessels were visualized using intravital microscopy and the diameter constantly measured using a video dimension analyser. Dural blood vessels were constricted with endothelin-1 (3 microg kg(-1), i.v.) prior to dilation of the dural blood vessels with calcitonin gene-related peptide (CGRP; 1 microg kg(-1), i.v.) or local electrical stimulation (up to 300 microA) of the dura mater. ⋯ Rizatriptan did not reverse the dural dilation evoked by CGRP indicating an action on presynaptic receptors located on trigeminal sensory fibres innervating dural blood vessels. In addition, neurogenic dural vasodilation was also blocked by the selective 5-HT(1D) agonist PNU-142633 (100 microg kg(-1)) but not by the 5-HT(1F) agonist LY334370 (3 mg kg(-1)) suggesting that rizatriptan blocks neurogenic vasodilation via an action on 5-HT(1D) receptors located on perivascular trigeminal nerves to inhibit CGRP release. This mechanism may underlie one of the anti-migraine actions of the triptan class exemplified by rizatriptan and suggests that the guinea-pig is an appropriate species in which to investigate the pharmacology of neurogenic dural vasodilation.
-
Biography Historical Article
Seventh W.D.M. Paton Memorial Lecture. The man who never was--Walter Ernest Dixon FRS.
-
1. Recent studies demonstrated that inhibition or genetic inactivation of the enzyme poly (ADP-ribose) polymerase (PARP) is beneficial in myocardial reperfusion injury. PARP activation in the reperfused myocardium has been assumed, but not directly demonstrated. ⋯ Our results demonstrate a significant and prolonged activation of PARP in the reperfused myocardium, localizing to the necrotic area and the ischaemic borderzone. Furthermore, the studies demonstrate that PARP inhibition affords long-term beneficial morphological and functional effects in the reperfused myocardium. These data strengthen the notion that pharmacological PARP inhibition is a viable novel experimental approach for protection against myocardial reperfusion injury.
-
It was supposed that inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA) reductase (statins) might inhibit the expression of the fibrosis-related factor CTGF (connective tissue growth factor) by interfering with the isoprenylation of Rho proteins. The human renal fibroblast cell line TK173 was used as an in vitro model system to study the statin-mediated modulation of the structure of the actin cytoskeleton and of the expression of CTGF mRNA. Incubation of the cells with simvastatin or lovastatin time-dependently and reversibly changed cell morphology and the actin cytoskeleton with maximal effects observed after about 18 h. ⋯ The effect was prevented by mevalonate and GGPP, but not FPP. These data are in agreement with the hypothesis that interference of statins with the expression of CTGF mRNA is primarily due to interference with the isoprenylation of RhoA, in line with previous studies, which have shown that RhoA is an essential mediator of CTGF induction. The direct interference of statins with the synthesis of CTGF, a protein functionally related to the development of fibrosis, may thus be a novel mechanism underlying the beneficial effects of statins observed in renal diseases.