British journal of pharmacology
-
Descriptions of the South American arrow poisons known as curares were reported by explorers in the 16th century, and their site of action in producing neuromuscular block was determined by Claude Bernard in the mid-19th century. Tubocurarine, the most important curare alkaloid, played a large part in experiments to determine the role of acetylcholine in neuromuscular transmission, but it was not until after 1943 that neuromuscular blocking drugs became established as muscle relaxants for use during surgical anaesthesia. Tubocurarine causes a number of unwanted effects, and there have been many attempts to replace it. ⋯ The nondepolarising blocking drugs are reversible acetylcholine receptor antagonists. The main ones are the atracurium group, which possess a built-in self-destruct mechanism that makes them specially useful in kidney or liver failure, and the vecuronium group, which are specially free from unwanted side effects. Of this latter group, the compound rocuronium is of special interest because its rapid onset of action allows it to be used for intubation, and there is promise that its duration of action may be rapidly terminated by a novel antagonist, a particular cyclodextrin, that chelates the drug, thereby removing it from the acetylcholine receptors.
-
Historical Article
A brief history of the British Pharmacological Society.
The article traces the history of the BPS since its inception in 1931 until the present day. Details are given about the size and nature of the membership and how the governance of the Society has changed during the last 75 years. The emergence of the Clinical Section from within the main Society and the growth of the Society's publications are described.
-
Angiotensin II receptor blockers (AIIRBs) have been shown to prevent atrial fibrillation. The pulmonary veins (PVs) are the most important focus for the generation of atrial fibrillation. The aim of this study was to evaluate whether angiotensin II or AIIRB may change the arrhythmogenic activity of the PVs. ⋯ Angiotensin II reduced the transient outward potassium current (I(to)) but increased the L-type calcium, delayed rectifier potassium (I(K)), transient inward (I(ti)), pacemaker, and Na(+)-Ca(2+) exchanger (NCX) currents in the PV cardiomyocytes. Losartan decreased the I(to), I(K), I(ti), and NCX currents. In conclusion, angiotensin II and AIIRB modulate the PV electrical activity, which may play a role in the pathophysiology of atrial fibrillation.