British journal of pharmacology
-
Myocardial reperfusion injury prevents optimal salvage of the ischaemic myocardium, and adjunct therapy that would significantly reduce reperfusion injury is still lacking. We investigated whether (1) the heart could be pre- and/or post-conditioned using levosimendan (levosimendan pre-conditioning (LPC) and levosimendan post-conditioning (LPostC)) and (2) the prosurvival kinases and/or the sarcolemmal or mitochondrial K(ATP) channels are involved. ⋯ (1) Hearts could be pharmacologically pre- and post-conditioned with levosimendan; (2) levosimendan pretreatment is the most effective way to reduce infarct size, possibly by increasing ERK 42/44 activity; (3) benefits of LPC and LPostC were abolished by both K(ATP) channel blockers and (4) LPC may be useful before elective cardiac surgery, whereas LPostC may be used after acute coronary artery events.
-
A large range of neuroadaptations develop in response to chronic opioid exposure and these are thought to be more or less critical for expression of the major features of opioid addiction: tolerance, withdrawal and processes that may contribute to compulsive use and relapse. This review considers these adaptations at different levels of organization in the nervous system including tolerance at the mu-opioid receptor itself, cellular tolerance and withdrawal in opioid-sensitive neurons, systems tolerance and withdrawal in opioid-sensitive nerve networks, as well as synaptic plasticity in opioid sensitive nerve networks. ⋯ The potential complexity of network, or systems adaptations that interact with opioid-sensitive neurons is great but some candidate neuropeptide systems that interact with mu-opioid sensitive neurons may play a role in tolerance and withdrawal, as might activation of glial signalling. Implication of synaptic forms of learning such as long term potentiation and long term depression in opioid addiction is still in its infancy but this ultimately has the potential to identify specific synapses that contribute to compulsive use and relapse.
-
Neutrophil migration into tissues is involved in the genesis of inflammatory pain. Here, we addressed the hypothesis that the effect of CXC chemokines on CXCR1/2 is important to induce neutrophil migration and inflammatory hypernociception. ⋯ CXCR1/2 mediates neutrophil migration and is involved in the cascade of events leading to inflammatory hypernociception. In addition to modifying fundamental pathological processes, non-competitive allosteric inhibitors of CXCR1/2 may have the additional benefit of providing partial relief for pain and, hence, may be a valid therapeutic target for further studies aimed at the development of new drugs for the treatment of rheumatoid arthritis.
-
We investigated whether or not kinin receptors play a role in diabetic blood-retinal barrier breakdown, which is a leading cause of vision loss. ⋯ Kinin B(1) receptors are upregulated in retinas of STZ-diabetic rats through a mechanism involving oxidative stress. Both kinin B(1) and B(2) receptors contribute to increased plasma extravasation in diabetic retinopathy. Chronic inhibition of both kinin receptors, possibly with antioxidant adjuvants, may be a novel therapeutic strategy for diabetic retinopathy.
-
The endogenous cannabinoid anandamide (AEA) acts at cannabinoid (CB(1)) and vanilloid (TRPV(1)) receptors. AEA also shows antinociceptive properties; although the underlying mechanism for this is not fully understood, both CB(1) and TRPV(1) may be involved. Voltage-activated Ca(2+) channels in rat-cultured dorsal root ganglion (DRG) neurons are modulated by AEA. However, AEA in different populations of neurons enhanced or attenuated KCl-evoked Ca(2+) influx; these effects were linked with soma size. The aim of this study was to determine how AEA or its metabolites might produce these variable responses. ⋯ These data suggest that the products of AEA metabolism by FAAH contribute to the attenuation of K(+) conductances and altered excitability of cultured sensory neurons.