Journal of clinical microbiology
-
J. Clin. Microbiol. · Oct 2014
Comparative StudyAnalysis of culture-dependent versus culture-independent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid.
The diagnosis and management of pneumonia are limited by the use of culture-based techniques of microbial identification, which may fail to identify unculturable, fastidious, and metabolically active viable but unculturable bacteria. Novel high-throughput culture-independent techniques hold promise but have not been systematically compared to conventional culture. We analyzed 46 clinically obtained bronchoalveolar lavage (BAL) fluid specimens from symptomatic and asymptomatic lung transplant recipients both by culture (using a clinical microbiology laboratory protocol) and by bacterial 16S rRNA gene pyrosequencing. ⋯ We present two case studies in which culture-independent techniques identified a respiratory pathogen missed by culture and clarified whether a cultured "oral flora" species represented a state of acute infection. In summary, we found that bacterial culture of BAL fluid is largely effective in discriminating acute infection from its absence and identified some specific limitations of BAL fluid culture in the diagnosis of pneumonia. We report the first correlation of quantitative BAL fluid culture results with culture-independent evidence of infection.
-
J. Clin. Microbiol. · Oct 2014
Comparative StudyEndotracheal aspirate and bronchoalveolar lavage fluid analysis: interchangeable diagnostic modalities in suspected ventilator-associated pneumonia?
Authoritative guidelines state that the diagnosis of ventilator-associated pneumonia (VAP) can be established using either endotracheal aspirate (ETA) or bronchoalveolar lavage fluid (BALF) analysis, thereby suggesting that their results are considered to be in accordance. Therefore, the results of ETA Gram staining and semiquantitative cultures were compared to the results from a paired ETA-BALF analysis. Different thresholds for the positivity of ETAs were assessed. ⋯ For the diagnosis of VAP, the most accurate threshold for positivity of ETA semiquantitative cultures was moderate or heavy growth, whereas the optimal threshold for BALF Gram staining was ≥ 1 microorganisms per high power field. The Cohen's kappa coefficients were 0.22, 0.31, and 0.60 for ETA and paired BALF Gram stains, cultures, and BALF Gram stains, respectively. Since the ETA and BALF Gram stains and cultures agreed only fairly, they are probably not interchangeable for diagnosing VAP.
-
J. Clin. Microbiol. · Oct 2014
Comparative StudyPerformance of two resin-containing blood culture media in detection of bloodstream infections and in direct matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) broth assays for isolate identification: clinical comparison of the BacT/Alert Plus and Bactec Plus systems.
We compared the clinical performances of the BacT/Alert Plus (bioMérieux) and Bactec Plus (Becton Dickinson) aerobic and anaerobic blood culture (BC) media with adsorbent polymeric beads. Patients ≥ 16 years old with suspected bloodstream infections (BSIs) were enrolled in intensive care units and infectious disease wards. A single 40-ml blood sample was collected from each and used to inoculate (10 ml/bottle) one set of BacT/Alert Plus cultures and one set of Bactec Plus cultures, each set consisting of one aerobic and one anaerobic bottle. ⋯ They also allowed earlier identification of coagulase-negative staphylococcal growth (mean, 2.8 h; P = 0.003) and growth in samples from patients not on antimicrobial therapy that yielded positive results (mean, 1.3 h; P < 0.001). Similarly high percentages of microorganisms in BacT/Alert and Bactec cultures (93.8% and 93.3%, respectively) were identified by direct matrix-assisted laser desorption ionization-time of flight mass spectrometry assay of BC broths. The BacT/Alert Plus media line appears to be a reliable, timesaving tool for routine detection of BSIs in the population we studied, although further studies are needed to evaluate their performance in other settings.
-
J. Clin. Microbiol. · Oct 2014
Fatal systemic necrotizing infections associated with a novel paramyxovirus, anaconda paramyxovirus, in green anaconda juveniles.
Beginning in July 2011, 31 green anaconda (Eunectes murinus) juveniles from an oceanarium in Hong Kong died over a 12-month period. Necropsy revealed at least two of the following features in 23 necropsies: dermatitis, severe pan-nephritis, and/or severe systemic multiorgan necrotizing inflammation. Histopathological examination revealed severe necrotizing inflammation in various organs, most prominently the kidneys. ⋯ Complete genome sequencing of five isolates confirmed that the infections originated from the same clone. Comparative genomic and phylogenetic analyses and mRNA editing experiments revealed a novel paramyxovirus in the genus Ferlavirus, named anaconda paramyxovirus, with a typical Ferlavirus genomic organization of 3'-N-U-P/V/I-M-F-HN-L-5'. Epidemiological and genomic analyses suggested that the anaconda juveniles acquired the virus perinatally from the anaconda mother rather than from other reptiles in the park, with subsequent interanaconda juvenile transmission.