Journal of clinical microbiology
-
J. Clin. Microbiol. · May 2020
Comparative StudyComparative Performance of SARS-CoV-2 Detection Assays Using Seven Different Primer-Probe Sets and One Assay Kit.
Nearly 400,000 people worldwide are known to have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) beginning in December 2019. The virus has now spread to over 168 countries including the United States, where the first cluster of cases was observed in the Seattle metropolitan area in Washington. Given the rapid increase in the number of cases in many localities, the availability of accurate, high-throughput SARS-CoV-2 testing is vital to efforts to manage the current public health crisis. ⋯ ES.2020.25.3.2000045) and the N2 set developed by the CDC (Division of Viral Diseases, Centers for Disease Control and Prevention, 2020, https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-primer-probes.pdf). All assays tested were found to be highly specific for SARS-CoV-2, with no cross-reactivity with other respiratory viruses observed in our analyses regardless of the primer-probe set or kit used. These results will provide valuable information to other clinical laboratories who are actively developing SARS-CoV-2 testing protocols at a time when increased testing capacity is urgently needed worldwide.
-
J. Clin. Microbiol. · May 2020
Clinical Evaluation of the cobas SARS-CoV-2 Test and a Diagnostic Platform Switch during 48 Hours in the Midst of the COVID-19 Pandemic.
Laboratories are currently witnessing extraordinary demand globally for sampling devices, reagents, consumables, and diagnostic instruments needed for timely diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To meet diagnostic needs as the pandemic grows, the U. S. ⋯ A good correlation (r2 = 0.96) between cycle threshold values for SARS-CoV-2-specific targets obtained by cobas and the comparator was observed. Our results showed that cobas is a reliable assay for qualitative detection of SARS-CoV-2 in nasopharyngeal swab samples collected in the Universal Transport Medium System (UTM-RT) (Copan, Brescia, Italy). Under the extraordinary circumstances that laboratories are facing worldwide, a safe diagnostic platform switch is feasible in only 48 h and in the midst of the COVID-19 pandemic if carefully planned and executed.
-
J. Clin. Microbiol. · May 2020
Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2.
At present, PCR-based nucleic acid detection cannot meet the demands for coronavirus infectious disease (COVID-19) diagnosis. Two hundred fourteen confirmed COVID-19 patients who were hospitalized in the General Hospital of Central Theater Command of the People's Liberation Army between 18 January and 26 February 2020 were recruited. Two enzyme-linked immunosorbent assay (ELISA) kits based on recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (rN) and spike protein (rS) were used for detecting IgM and IgG antibodies, and their diagnostic feasibility was evaluated. ⋯ We observed an increase in the positive rate for IgM and IgG with an increasing number of days post-disease onset (d.p.o.), but the positive rate of IgM dropped after 35 d.p.o. The positive rate of rN-based and rS-based IgM and IgG ELISAs was less than 60% during the early stage of the illness, 0 to 10 d.p.o., and that of IgM and IgG was obviously increased after 10 d.p.o. ELISA has a high sensitivity, especially for the detection of serum samples from patients after 10 d.p.o., so it could be an important supplementary method for COVID-19 diagnosis.
-
The COVID-19 outbreak has had a major impact on clinical microbiology laboratories in the past several months. This commentary covers current issues and challenges for the laboratory diagnosis of infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the preanalytical stage, collecting the proper respiratory tract specimen at the right time from the right anatomic site is essential for a prompt and accurate molecular diagnosis of COVID-19. ⋯ In the analytic stage, real-time reverse transcription-PCR (RT-PCR) assays remain the molecular test of choice for the etiologic diagnosis of SARS-CoV-2 infection while antibody-based techniques are being introduced as supplemental tools. In the postanalytical stage, testing results should be carefully interpreted using both molecular and serological findings. Finally, random-access, integrated devices available at the point of care with scalable capacities will facilitate the rapid and accurate diagnosis and monitoring of SARS-CoV-2 infections and greatly assist in the control of this outbreak.