Journal of clinical microbiology
-
J. Clin. Microbiol. · Jul 2020
ReviewUnderstanding, Verifying, and Implementing Emergency Use Authorization Molecular Diagnostics for the Detection of SARS-CoV-2 RNA.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has brought a new wave of challenges to health care, particularly in the area of rapid diagnostic test development and implementation. The diagnosis of acute coronavirus disease 2019 (COVID-19) is critically dependent on the detection of SARS-CoV-2 RNA from clinical specimens (e.g., nasopharyngeal swabs). While laboratory-developed testing for SARS-CoV-2 is an essential component of diagnostic testing for this virus, the majority of clinical microbiology laboratories are dependent on commercially available SARS-CoV-2 molecular assays. ⋯ Outside of highly specialized academic and commercial laboratory settings, clinical microbiology laboratories are likely unfamiliar with the EUA classification, and thus, assay verification can be daunting. Further compounding anxiety for laboratories are major issues with the supply chain that are dramatically affecting the availability of test reagents and requiring laboratories to implement multiple commercial EUA tests. Here, we describe guidance for the verification of assays with EUA for the detection of SARS-CoV-2 nucleic acid from clinical specimens.
-
J. Clin. Microbiol. · Jul 2020
Evaluation of the QIAstat-Dx Respiratory SARS-CoV-2 Panel, the First Rapid Multiplex PCR Commercial Assay for SARS-CoV-2 Detection.
In the race to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), efficient detection and triage of infected patients must rely on rapid and reliable testing. In this work, we performed the first evaluation of the QIAstat-Dx respiratory SARS-CoV-2 panel (QIAstat-SARS) for SARS-CoV-2 detection. This assay is the first rapid multiplex PCR (mPCR) assay, including SARS-CoV-2 detection, and is fully compatible with a non-PCR-trained laboratory or point-of-care (PoC) testing. ⋯ No cross-reaction was encountered for any other respiratory viruses or bacteria included in the panel. The QIAstat-SARS rapid multiplex PCR panel provides a highly sensitive, robust, and accurate assay for rapid detection of SARS-CoV-2. This assay allows rapid decisions even in non-PCR-trained laboratory or point-of-care testing, allowing innovative organization.
-
J. Clin. Microbiol. · Jul 2020
Clinical performance of the Luminex NxTAG CoV Extended Panel for SARS-CoV-2 detection in nasopharyngeal specimens of COVID-19 patients in Hong Kong.
In December 2019, the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was first reported in the Hubei province of China and later spread all over the world. There was an urgent need of a high-throughput molecular test for screening the COVID-19 patients in the community. The Luminex NxTAG CoV extended panel is a high-throughput FDA emergency use-authorized molecular diagnostic assay for SARS-CoV-2 detection. ⋯ Overall, the E gene target of the NxTAG panel demonstrated the highest sensitivity among the three SARS-CoV-2 targets, while the N gene targets demonstrated the least. In conclusion, the NxTAG CoV extended panel is simple to use, and it has high diagnostic sensitivity and specificity to SARS-CoV-2 in nasopharyngeal specimens. We recommend this diagnostic system for high-throughput COVID-19 screening in the community.
-
Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) got off to a slow start in the United States. In this commentary, I describe my experience with CoV disease 2019 (COVID-19), with a focus on being tested at the University of North Carolina-Chapel Hill Respiratory Diagnostic Center on its inaugural day.
-
J. Clin. Microbiol. · Jul 2020
Open Development and Clinical Validation of Multiple 3D-Printed Nasopharyngeal Collection Swabs: Rapid Resolution of a Critical COVID-19 Testing Bottleneck.
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck blocking clinical laboratories' ability to perform high-sensitivity virological testing for SARS-CoV-2. To address this crisis, we designed and executed an innovative, cooperative, rapid-response translational-research program that brought together health care workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a multistep preclinical evaluation of 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and we shared results and other feedback via a public data repository (http://github.com/rarnaout/Covidswab/). ⋯ Study staff preferred one of the prototypes over the others and preferred the control swab overall. The total time elapsed between identification of the problem and validation of the first prototype was 22 days. Contact information for ordering can be found at http://printedswabs.org Our experience holds lessons for the rapid development, validation, and deployment of new technology for this pandemic and beyond.