Medical hypotheses
-
Review
Dendritic cell vaccine immunotherapy; the beginning of the end of cancer and COVID-19. A hypothesis.
Immunotherapy is the newest approach to combat cancer. It can be achieved using several strategies, among which is the dendritic cell (DC) vaccine therapy. Several clinical trials are ongoing using DC vaccine therapy either as a sole agent or in combination with other interventions to tackle different types of cancer. ⋯ We hypothesize that DC vaccine therapy may provide a potential treatment strategy to help combat COVID-19. Cancer patients are at the top of the vulnerable population owing to their immune-compromised status. In this review, we discuss DC vaccine therapy in the light of the body's immunity, cancer, and newly emerging infections such as COVID-19 in hopes of better-customized treatment options for patients with multiple comorbidities.
-
No definitive treatment for COVID-19 exists although promising results have been reported with remdesivir and glucocorticoids. Short of a truly effective preventive or curative vaccine against SARS-CoV-2, it is becoming increasingly clear that multiple pathophysiologic processes seen with COVID-19 as well as SARS-CoV-2 itself should be targeted. Because alpha-1-antitrypsin (AAT) embraces a panoply of biologic activities that may antagonize several pathophysiologic mechanisms induced by SARS-CoV-2, we hypothesize that this naturally occurring molecule is a promising agent to ameliorate COVID-19. ⋯ Furthermore, because both NETs formation and the presence of anti-phospholipid antibodies are increased in both COVID-19 and non-COVID pre-eclampsia, it suggests a similar vascular pathogenesis in both disorders. As a final point, AAT has an excellent safety profile when administered to patients with AAT deficiency and is dosed intravenously once weekly but also comes in an inhaled preparation. Thus, AAT is an appealing drug candidate to treat COVID-19 and should be studied.
-
Dental professionals work closely with patients and present an increased risk of person-to-person transmission of SARS-CoV-2. Moreover, the use of ultrasonic scalers, air-water syringes, and slow and high-speed handpieces, which are common in the dental office, generate spatter and aerosol. The use of preprocedural mouthrinses has been proposed to reduce the viral load in saliva and oropharyngeal tissues, thus decreasing viral load in dental aerosol. ⋯ We hypothesized that mouthrinses may reduce SARS-CoV-2 viral load in the oropharynx and its fluids reducing viral load in dental aerosol. The potential use of mouthrinses is discussed, along with proposal of in vitro and clinical studies, in order to evaluate this hypothesis. If this hypothesis holds true, dental professionals and patients may benefit from the routine use of preprocedural mouthrinses.