Medical hypotheses
-
No definitive treatment for COVID-19 exists although promising results have been reported with remdesivir and glucocorticoids. Short of a truly effective preventive or curative vaccine against SARS-CoV-2, it is becoming increasingly clear that multiple pathophysiologic processes seen with COVID-19 as well as SARS-CoV-2 itself should be targeted. Because alpha-1-antitrypsin (AAT) embraces a panoply of biologic activities that may antagonize several pathophysiologic mechanisms induced by SARS-CoV-2, we hypothesize that this naturally occurring molecule is a promising agent to ameliorate COVID-19. ⋯ Furthermore, because both NETs formation and the presence of anti-phospholipid antibodies are increased in both COVID-19 and non-COVID pre-eclampsia, it suggests a similar vascular pathogenesis in both disorders. As a final point, AAT has an excellent safety profile when administered to patients with AAT deficiency and is dosed intravenously once weekly but also comes in an inhaled preparation. Thus, AAT is an appealing drug candidate to treat COVID-19 and should be studied.
-
Review
Dendritic cell vaccine immunotherapy; the beginning of the end of cancer and COVID-19. A hypothesis.
Immunotherapy is the newest approach to combat cancer. It can be achieved using several strategies, among which is the dendritic cell (DC) vaccine therapy. Several clinical trials are ongoing using DC vaccine therapy either as a sole agent or in combination with other interventions to tackle different types of cancer. ⋯ We hypothesize that DC vaccine therapy may provide a potential treatment strategy to help combat COVID-19. Cancer patients are at the top of the vulnerable population owing to their immune-compromised status. In this review, we discuss DC vaccine therapy in the light of the body's immunity, cancer, and newly emerging infections such as COVID-19 in hopes of better-customized treatment options for patients with multiple comorbidities.
-
The current SARS-Cov-2 virus pandemic challenges critical care physicians and other caregivers to find effective treatment for desperately ill patients - especially those with sudden and extreme hypoxemia. Unlike patients with other forms of Acute Respiratory Distress Syndrome, these patients do not exhibit increased lung stiffness or dramatic dyspnea., even in the presence of arterial blood oxygen levels lower than that seen normally in mixed venous blood. Urgent intubation and mechanical ventilation with high inflation pressures and raised inhaled oxygen concentration have proved unhelpful or worse, but why? Our Hypothesis is that sudden opening of a previously undetected probe-patent foramen ovale (PPFO) may explain this mystery. ⋯ We review the interaction between viral corona spike protein and ACE-2 receptors present on the surface of alveolar lining cells, and contribution to hypercoagulabilty caused by the spike protein. Search for an open PFO after a large drop in arterial oxygen saturation can be performed at the bedside with a variety of well-established techniques including bedside echocardiography, nitrogen washout test, and imaging studies. Potential treatments might include balloon or patch closure of the shunt, and various drug treatments to lower pulmonary vascular resistance.
-
The COVID-19 pandemic has not spared any continent. The disease has affected more than 7,500,000 individuals globally and killed approximately 450,000 individuals. ⋯ ACE2 receptors are present in the human lungs and other organs. SARS-CoV-2 is a new virus that belongs to the subgenus Sarbecovirus; viruses in this subgenus have spread widely in the previous years and caused outbreaks of severe acute respiratory syndromes.
-
Despite aggressive intervention, patients who survive an out-of-hospital cardiac arrest (OHCA) generally have very poor prognoses, with nationwide survival rates of approximately 10-20%. Approximately 90% of survivors will have moderate to severe neurological injury ranging from moderate cognitive impairment to brain death. Currently, few early prognostic indicators are considered reliable enough to support patients' families and clinicians' in their decisions regarding medical futility. ⋯ Specifically, during and after immediate resuscitation and return of ROSC, clinicians and families face a series of important questions regarding patient prognosis, futility of care and allocation of scarce resources such as the early initiation of extracorporeal cardiopulmonary resuscitation (ECPR). The ability to provide early prognostic information in this setting is highly valuable. Currently available, as well as potential biomarkers that could be good candidates in prognostication of neurological outcomes after OHCA or in the setting of refractory cardiac arrest will be reviewed and discussed.