Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Apr 1988
Comparative StudyAcidic fibroblast growth factor enhances regeneration of processes by postnatal mammalian retinal ganglion cells in culture.
Postnatal rat retinal ganglion cells (RGCs) were identified with specific fluorescent labels and placed in culture. Under these conditions, the outgrowth of processes by RGCs was found to be promoted to a far greater degree by acidic fibroblast growth factor (aFGF) than by basic fibroblast growth factor (bFGF). The effect of aFGF and bFGF on process extension by solitary RGCs was quantified after 24 hr in culture, a time when neither a FGF nor bFGF enhanced RGC survival. ⋯ These results suggest that aFGF has a potent influence on the outgrowth of processes by a neuron in the mammalian central nervous system. The potentiation of this effect by heparin leads us to speculate that the interaction of aFGF with a heparin-like molecule located in the extracellular matrix (such as heparan sulfate proteoglycan) may produce physiological effects in vivo. Furthermore, the lack of a substantial effect of bFGF in this system under these conditions shows that a specific population of mammalian central neurons may be differentially influenced by these two closely related peptide growth factors.