Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · May 1994
Interleukin 1 beta and corticotropin-releasing factor inhibit pain by releasing opioids from immune cells in inflamed tissue.
Local analgesic effects of exogenous opioid agonists are particularly prominent in painful inflammatory conditions and are mediated by opioid receptors on peripheral sensory nerves. The endogenous ligands of these receptors, opioid peptides, have been demonstrated in resident immune cells within inflamed tissue of animals and humans. Here we examine in vivo and in vitro whether interleukin 1 beta (IL-1) or corticotropin-releasing factor (CRF) is capable of releasing these endogenous opioids and inhibiting pain. ⋯ Finally, IL-1 and CRF produce acute release of immunoreactive beta-endorphin in cell suspensions freshly prepared from inflamed lymph nodes. This effect is reversible by IL-1 receptor antagonist and alpha-helical CRF, respectively. These findings suggest that IL-1 and CRF activate their receptors on immune cells to release opioids that subsequently occupy multiple opioid receptors on sensory nerves and result in antinociception. beta-Endorphin, mu- and delta-opioid receptors play a major role, but IL-1 and CRF appear to differentially release additional opioid peptides.