Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · May 2000
Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis.
Lymphangioleiomyomatosis (LAM) is a progressive and often fatal interstitial lung disease characterized by a diffuse proliferation of abnormal smooth muscle cells in the lungs. LAM is of unusual interest biologically because it affects almost exclusively young women. LAM can occur as an isolated disorder (sporadic LAM) or in association with tuberous sclerosis complex. ⋯ In all four patients from whom lung tissue was available, the same mutation found in the angiomyolipoma was present in the abnormal pulmonary smooth muscle cells. In no case was the mutation present in normal kidney, morphologically normal lung, or lymphoblastoid cells. Our data demonstrate that somatic mutations in the TSC2 gene occur in the angiomyolipomas and pulmonary LAM cells of women with sporadic LAM, strongly supporting a direct role of TSC2 in the pathogenesis of this disease.
-
Proc. Natl. Acad. Sci. U.S.A. · May 2000
Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction.
When the heart fails, there is often a constellation of biochemical alterations of the beta-adrenergic receptor (betaAR) signaling system, leading to the loss of cardiac inotropic reserve. betaAR down-regulation and functional uncoupling are mediated through enhanced activity of the betaAR kinase (betaARK1), the expression of which is increased in ischemic and failing myocardium. These changes are widely viewed as representing an adaptive mechanism, which protects the heart against chronic activation. ⋯ Rather than leading to deleterious effects, cardiac function is improved, and the development of heart failure is delayed. These results appear to challenge the notion that dampening of betaAR signaling in the failing heart is protective, and they may lead to novel therapeutic strategies to treat heart disease via inhibition of betaARK1 and preservation of myocardial betaAR function.
-
Proc. Natl. Acad. Sci. U.S.A. · May 2000
Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa.
Protease-activated receptor 2 (PAR2) is expressed by vascular endothelial cells and other cells in which its function and physiological activator(s) are unknown. Unlike PAR1, PAR3, and PAR4, PAR2 is not activatable by thrombin. Coagulation factors VIIa (FVIIa) and Xa (FXa) are proteases that act upstream of thrombin in the coagulation cascade and require cofactors to interact with their substrates. ⋯ Responses in keratinocytes and cytokine-treated endothelial cells suggested that PAR2 may be activated directly by TF/FVIIa and indirectly by TF/FVIIa-generated FXa at naturally occurring expression levels of TF and PAR2. These results suggest that PAR2, although not activatable by thrombin, may nonetheless function as a sensor for coagulation proteases and contribute to endothelial activation in the setting of injury and inflammation. More generally, these findings highlight the potential importance of cofactors in regulating PAR function and specificity.