Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Jan 2001
Attractin/mahogany/zitter plays a critical role in myelination of the central nervous system.
The rat zitter (zi) mutation induces hypomyelination and vacuolation in the central nervous system (CNS), which result in early-onset tremor and progressive flaccid paresis. By positional cloning, we found a marked decrease in Attractin (Atrn) mRNA in the brain of the zi/zi rat and identified zi as an 8-bp deletion at a splice donor site of Atrn. Atrn has been known to play multiple roles in regulating physiological processes that are involved in monocyte-T cell interaction, agouti-related hair pigmentation, and control of energy homeostasis. ⋯ Transgenic rescue experiments showed that the membrane-type Atrn complemented both neurological alteration and abnormal pigmentation in zi/zi rats, but that the secreted-type Atrn complemented neither mutant phenotype. Furthermore, we discovered that mg mice exhibited hypomyelination and vacuolation in the CNS associated with body tremor. We conclude from these results that the membrane Atrn has a critical role in normal myelination in the CNS and would provide insights into the physiology of myelination as well as the etiology of myelin diseases.
-
Proc. Natl. Acad. Sci. U.S.A. · Jan 2001
Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse.
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease arising from defects in the dystrophin gene, typically nonsense or frameshift mutations, that preclude the synthesis of a functional protein. A milder, allelic version of the disease, Becker muscular dystrophy, generally arises from in-frame deletions that allow synthesis of a shorter but still semifunctional protein. Therapies to introduce functional dystrophin into dystrophic tissue through either cell or gene replacement have not been successful to date. ⋯ Exon 23 skipping was first optimized in vitro in transfected H-2K(b)-tsA58 mdx myoblasts and then induced in vivo. Immunohistochemical staining demonstrated the synthesis and correct subsarcolemmal localization of dystrophin and gamma-sarcoglycan in the mdx mouse after intramuscular delivery of antisense oligoribonucleotide:liposome complexes. This approach should reduce the severity of DMD by allowing a dystrophic gene transcript to be modified, such that it can be translated into a Becker-dystrophin-like protein.