Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2008
Calmodulin dynamically regulates the trafficking of the metabotropic glutamate receptor mGluR5.
Metabotropic glutamate receptors (mGluRs) 1-8 are G protein-coupled receptors (GPCRs) that modulate excitatory neurotransmission, neurotransmitter release, and synaptic plasticity. PKC regulates many aspects of mGluR function, including protein-protein interactions, Ca(2+) signaling, and receptor desensitization. However, the mechanisms by which PKC regulates mGluR function are poorly understood. ⋯ In addition, S901 phosphorylation inhibits mGluR5 binding to CaM, decreasing mGluR5 surface expression. Furthermore, blocking PKC phosphorylation of mGluR5 on S901 dramatically affects mGluR5 signaling by prolonging Ca(2+) oscillations. Thus, our data demonstrate that mGluR5 activation triggers phosphorylation of S901, thereby directly linking PKC phosphorylation, CaM binding, receptor trafficking, and downstream signaling.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2008
DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease.
Sickle cell disease (SCD) is a debilitating monogenic blood disorder with a highly variable phenotype characterized by severe pain crises, acute clinical events, and early mortality. Interindividual variation in fetal hemoglobin (HbF) expression is a known and potentially heritable modifier of SCD severity. High HbF levels are correlated with reduced morbidity and mortality. ⋯ Together, common SNPs at the BCL11A, HBS1L-MYB, and beta-globin (HBB) loci account for >20% of the variation in HbF levels in SCD patients. We also have shown that HbF-associated SNPs associate with pain crisis rate in SCD patients. These results provide a clear example of inherited common sequence variants modifying the severity of a monogenic disease.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2008
Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1.
Prostaglandins (PG) are known to induce pain perception indirectly by sensitizing nociceptors. Accordingly, the analgesic action of nonsteroidal anti-inflammatory drugs (NSAIDs) results from inhibition of cyclooxygenases and blockade of PG biosynthesis. Cyclopentenone PGs, 15-d-PGJ(2), PGA(2), and PGA(1), formed by dehydration of their respective parent PGs, PGD(2), PGE(2), and PGE(1), possess a highly reactive alpha,beta-unsaturated carbonyl group that has been proposed to gate the irritant transient receptor potential A1 (TRPA1) channel. ⋯ The classical proalgesic PG, PGE(2), caused a slight calcium response in DRG neurons, increased c-fos expression in spinal neurons, and induced a delayed and sustained nociceptive response in both TRPA1(+/+) and TRPA1(-/-) mice. These results expand the mechanism of NSAID analgesia from blockade of indirect nociceptor sensitization by classical PGs to inhibition of direct TRPA1-dependent nociceptor activation by cyclopentenone PGs. Thus, TRPA1 antagonism may contribute to suppress pain evoked by PG metabolites without the adverse effects of inhibiting cyclooxygenases.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2008
Comparative StudySplenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia.
The autonomic nervous system maintains homeostasis through its sympathetic and parasympathetic divisions. During infection, cells of the immune system release cytokines and other mediators that cause fever, hypotension, and tissue injury. Although the effect of cytokines on the nervous system has been known for decades, only recently has it become evident that the autonomic nervous system, in turn, regulates cytokine production through neural pathways. ⋯ Synaptophysin-positive nerve endings were observed in close apposition to red pulp macrophages, but they do not express choline acetyltransferase or vesicular acetylcholine transporter. Surgical ablation of the splenic nerve and catecholamine depletion by reserpine indicate that these nerves are catecholaminergic and are required for functional inhibition of TNF production by vagus nerve stimulation. Thus, the cholinergic antiinflammatory pathway regulates TNF production in discrete macrophage populations via two serially connected neurons: one preganglionic, originating in the dorsal motor nucleus of the vagus nerve, and the second postganglionic, originating in the celiac-superior mesenteric plexus, and projecting in the splenic nerve.