Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Jan 2009
Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy.
Pathophysiological cardiac hypertrophy is one of the most common causes of heart failure. Epoxyeicosatrienoic acids, hydrolyzed and degraded by soluble epoxide hydrolase (sEH), can function as endothelium-derived hyperpolarizing factors to induce dilation of coronary arteries and thus are cardioprotective. In this study, we investigated the role of sEH in two rodent models of angiotensin II (Ang II)-induced cardiac hypertrophy. ⋯ These results were supported by studies in neonatal cardiomyocytes from sEH(-/-) mice. Our results suggest that sEH is specifically upregulated by Ang II, which directly mediates Ang II-induced cardiac hypertrophy. Thus, pharmacological inhibition of sEH would be a useful approach to prevent and treat Ang II-induced cardiac hypertrophy.
-
Proc. Natl. Acad. Sci. U.S.A. · Jan 2009
Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice.
Chronic obstructive pulmonary disease (COPD), which comprises emphysema and chronic bronchitis resulting from prolonged exposure to cigarette smoke (CS), is a major public health burden with no effective treatment. Emphysema is also associated with pulmonary hypertension, which can progress to right ventricular failure, an important cause of morbidity and mortality among patients with COPD. Nuclear erythroid 2 p45 related factor-2 (Nrf2) is a redox-sensitive transcription factor that up-regulates a battery of antioxidative genes and cytoprotective enzymes that constitute the defense against oxidative stress. ⋯ CDDO-Im significantly reduced lung oxidative stress, alveolar cell apoptosis, alveolar destruction, and pulmonary hypertension in Nrf2(+/+) mice caused by chronic exposure to CS. This protection from CS-induced emphysema depended on Nrf2, as Nrf2(-/-) mice failed to show significant reduction in alveolar cell apoptosis and alveolar destruction after treatment with CDDO-Im. These results suggest that targeting the Nrf2 pathway during the etiopathogenesis of emphysema may represent an important approach for prophylaxis against COPD.