Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2009
The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor.
Although the presence of a BH4 domain distinguishes the antiapoptotic protein Bcl-2 from its proapoptotic relatives, little is known about its function. BH4 deletion converts Bcl-2 into a proapoptotic protein, whereas a TAT-BH4 fusion peptide inhibits apoptosis and improves survival in models of disease due to accelerated apoptosis. Thus, the BH4 domain has antiapoptotic activity independent of full-length Bcl-2. ⋯ BH4 peptide binds to the regulatory and coupling domain of the IP3 receptor and inhibits IP3-dependent channel opening, Ca(2+) release from the ER, and Ca(2+)-mediated apoptosis. A peptide inhibitor of Bcl-2-IP3 receptor interaction prevents these BH4-mediated effects. By inhibiting proapoptotic Ca(2+) signals at their point of origin, the Bcl-2 BH4 domain has the facility to block diverse pathways through which Ca(2+) induces apoptosis.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2009
Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue.
Mechanosensitive K(+) channels TREK1 and TREK2 form a subclass of two P-domain K(+) channels. They are potently activated by polyunsaturated fatty acids and are involved in neuroprotection, anesthesia, and pain perception. Here, we show that acidification of the extracellular medium strongly inhibits TREK1 with an apparent pK near to 7.4 corresponding to the physiological pH. ⋯ The differential effect of acidification, that is, activation for TREK2 and inhibition for TREK1, involves other residues located in the P2M4 loop, linking the second P domain and the fourth membrane-spanning segment. Structural modeling of TREK1 and TREK2 and site-directed mutagenesis strongly suggest that attraction or repulsion between the protonated side chain of histidine and closely located negatively or positively charged residues in P2M4 control outer gating of these channels. The differential sensitivity of TREK1 and TREK2 to external pH variations discriminates between these two K(+) channels that otherwise share the same regulations by physical and chemical stimuli, and by hormones and neurotransmitters.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2009
Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels.
Proliferation of interstitial fibroblasts is a hallmark of progressive renal fibrosis commonly resulting in chronic kidney failure. The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) has been proposed to promote mitogenesis in several cell types and contribute to disease states characterized by excessive proliferation. Here, we hypothesized that K(Ca)3.1 activity is pivotal for renal fibroblast proliferation and that deficiency or pharmacological blockade of K(Ca)3.1 suppresses development of renal fibrosis. ⋯ Mice lacking K(Ca)3.1 (K(Ca)3.1(-/-)) showed a significant reduction in fibrotic marker expression, chronic tubulointerstitial damage, collagen deposition and alphaSMA(+) cells in kidneys after UUO, whereas functional renal parenchyma was better preserved. Pharmacological treatment with the selective K(Ca)3.1 blocker TRAM-34 similarly attenuated progression of UUO-induced renal fibrosis in wild-type mice and rats. In conclusion, our data demonstrate that K(Ca)3.1 is involved in renal fibroblast proliferation and fibrogenesis and suggest that K(Ca)3.1 may represent a therapeutic target for the treatment of fibrotic kidney disease.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2009
Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration.
One of the greatest influenza pandemic threats at this time is posed by the highly pathogenic H5N1 avian influenza viruses. To date, 61% of the 433 known human cases of H5N1 infection have proved fatal. Animals infected by H5N1 viruses have demonstrated acute neurological signs ranging from mild encephalitis to motor disturbances to coma. ⋯ In regions infected by H5N1 virus, we observe activation of microglia and alpha-synuclein phosphorylation and aggregation that persists long after resolution of the infection. We also observe a significant loss of dopaminergic neurons in the substantia nigra pars compacta 60 days after infection. Our results suggest that a pandemic H5N1 pathogen, or other neurotropic influenza virus, could initiate CNS disorders of protein aggregation including Parkinson's and Alzheimer's diseases.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2009
Mutation I810N in the alpha3 isoform of Na+,K+-ATPase causes impairments in the sodium pump and hyperexcitability in the CNS.
In a mouse mutagenesis screen, we isolated a mutant, Myshkin (Myk), with autosomal dominant complex partial and secondarily generalized seizures, a greatly reduced threshold for hippocampal seizures in vitro, posttetanic hyperexcitability of the CA3-CA1 hippocampal pathway, and neuronal degeneration in the hippocampus. Positional cloning and functional analysis revealed that Myk/+ mice carry a mutation (I810N) which renders the normally expressed Na(+),K(+)-ATPase alpha3 isoform inactive. ⋯ The epilepsy in Myk/+ mice and in vitro hyperexcitability could be prevented by delivery of additional copies of wild-type Na(+),K(+)-ATPase alpha3 by transgenesis, which also rescued Na(+),K(+)-ATPase activity. Our findings reveal the functional significance of the Na(+),K(+)-ATPase alpha3 isoform in the control of epileptiform activity and seizure behavior.